Cargando…
Forecasting COVID-19 pandemic: A data-driven analysis
In this paper, a new Susceptible-Exposed-Symptomatic Infectious-Asymptomatic Infectious-Quarantined-Hospitalized-Recovered-Dead (SEI(D)I(U)QHRD) deterministic compartmental model has been proposed and calibrated for interpreting the transmission dynamics of the novel coronavirus disease (COVID-19)....
Autor principal: | Nabi, Khondoker Nazmoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315964/ https://www.ncbi.nlm.nih.gov/pubmed/32834601 http://dx.doi.org/10.1016/j.chaos.2020.110046 |
Ejemplares similares
-
Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2020) -
Forecasting COVID-19 cases: A comparative analysis between recurrent and convolutional neural networks
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2021) -
Forecasting COVID-19 cases: A comparative analysis between Recurrent and Convolutional Neural Networks
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2021) -
Projections and fractional dynamics of COVID-19 with optimal control strategies
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2021) -
Controlling COVID-19 transmission with isolation of influential nodes
por: Chaharborj, Sarkhosh Seddighi, et al.
Publicado: (2022)