Cargando…

Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming

Recent research indicates that hard corals in a process that is termed phase shift are often replaced by soft corals in reefs. The simultaneous occurrence of local (i.e. organic eutrophication as highly under-investigated parameter) and global (i.e. ocean warming) factors may facilitate these phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Vollstedt, Svea, Xiang, Nan, Simancas-Giraldo, Susana Marcela, Wild, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316076/
https://www.ncbi.nlm.nih.gov/pubmed/32607278
http://dx.doi.org/10.7717/peerj.9182
Descripción
Sumario:Recent research indicates that hard corals in a process that is termed phase shift are often replaced by soft corals in reefs. The simultaneous occurrence of local (i.e. organic eutrophication as highly under-investigated parameter) and global (i.e. ocean warming) factors may facilitate these phase shifts as hard corals are negatively affected by both ocean warming and organic eutrophication. Knowledge about soft coral responses to environmental change remains incomplete, although these organisms are becoming important players in reefs. The present study thus investigated the individual and combined effects of organic eutrophication (as glucose addition) and warming on the ecological data of the pulsating soft coral Xenia umbellata. We assessed health status, growth and pulsation rates of soft corals in a 45 day aquarium experiment, with first manipulation of organic eutrophication (no, low, medium and high glucose addition) over 21 days followed by step-wise increases in water temperature from 26 to 32 °C over 24 days. Findings revealed that glucose addition did not affect health status, growth and pulsation rates of the investigated soft corals. Under simulated ocean warming, soft corals that had experienced organic eutrophication before, maintained significantly higher pulsation rates (averaging 22 beats per minute—bpm) and no mortality compared to the controls that showed a decrease of 56% (averaging 15 bpm) in pulsation rates and mortality of 30% at water temperatures of 32 °C compared to 26 °C. This apparently positive effect of organic eutrophication on the ecological data of soft corals under an ocean warming scenario decreased with increasing water temperature. This study thus indicates that (a) organic eutrophication as additional energy source up to a certain threshold may increase the resistance of soft corals to ocean warming and (b) pulsation rates of soft corals may be used as inexpensive, easily detectable, and non-invasive early warning indicator for ocean warming effects on benthic reef communities. When comparing findings of this study for soft corals with previous results for hard corals, it can be assumed that soft corals under the predicted increases of organic eutrophication and warming gain more and more competitive advantages. This may further facilitate phase shifts from hard to soft corals in warming reefs.