Cargando…

Monobodies as possible next-generation protein therapeutics – a perspective

Over the past two decades, hundreds of new somatic mutations have been identified in tumours, and a few dozen novel cancer therapeutics that selectively target these mutated oncoproteins have entered clinical practice. This development has resulted in clinical breakthroughs for a few tumour types, b...

Descripción completa

Detalles Bibliográficos
Autor principal: Oliver, Hantschel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316567/
https://www.ncbi.nlm.nih.gov/pubmed/29185244
http://dx.doi.org/10.4414/smw.2017.14545
Descripción
Sumario:Over the past two decades, hundreds of new somatic mutations have been identified in tumours, and a few dozen novel cancer therapeutics that selectively target these mutated oncoproteins have entered clinical practice. This development has resulted in clinical breakthroughs for a few tumour types, but more commonly patients' overall survival has not improved because of the development of drug resistance. Furthermore, only a very limited number of oncoproteins, largely protein kinases, are successfully targeted, whereas most non-kinase oncoproteins inside cancer cells remain untargeted. Engineered small protein inhibitors offer great promise in targeting a larger variety of oncoproteins with better efficacy and higher selectivity. In this article, I focus on a promising class of synthetic binding proteins, termed monobodies, that we have shown to inhibit previously untargetable protein-protein interactions in different oncoproteins. I will discuss the great promise alongside the technical challenges inherent in converting monobodies from potent pre-clinical target validation tools to next-generation protein-based therapeutics.