Cargando…
Reprogramming normal cells into tumor precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties
Defining the interplay between genetic events and microenvironmental contexts necessary to initiate tumorigenesis in normal cells is a central endeavor in cancer biology. We found that RTK/Ras oncogenes reprogram normal, freshly explanted primary mouse and human cells into tumor precursors, in a pro...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316573/ https://www.ncbi.nlm.nih.gov/pubmed/32066931 http://dx.doi.org/10.1038/s41563-020-0615-x |
Sumario: | Defining the interplay between genetic events and microenvironmental contexts necessary to initiate tumorigenesis in normal cells is a central endeavor in cancer biology. We found that RTK/Ras oncogenes reprogram normal, freshly explanted primary mouse and human cells into tumor precursors, in a process requiring increased force transmission between oncogene-expressing cells and their surrounding extracellular matrix (ECM). Microenvironments approximating the normal softness of healthy tissues, or blunting cellular mechanotransduction, prevent oncogene-mediated cell reprogramming and tumor emergence. However, RTK/Ras oncogenes empower a disproportional cellular response to the mechanical properties of the cell's environment, such that when cells experience even subtle supraphysiological ECM rigidity they are converted into tumor-initiating cells. These regulations rely on YAP/TAZ mechanotransduction, and YAP/TAZ target genes account for a large fraction of the transcriptional responses downstream of oncogenic signaling. This work lays the groundwork for exploiting oncogenic mechanosignaling as vulnerability at the onset of tumorigenesis, including tumor prevention strategies. |
---|