Cargando…
Deep learning-based anatomical site classification for upper gastrointestinal endoscopy
PURPOSE: Upper gastrointestinal (GI) endoscopic image documentation has provided an efficient, low-cost solution to address quality control for endoscopic reporting. The problem is, however, challenging for computer-assisted techniques, because different sites have similar appearances. Additionally,...
Autores principales: | He, Qi, Bano, Sophia, Ahmad, Omer F., Yang, Bo, Chen, Xin, Valdastri, Pietro, Lovat, Laurence B., Stoyanov, Danail, Zuo, Siyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316667/ https://www.ncbi.nlm.nih.gov/pubmed/32377939 http://dx.doi.org/10.1007/s11548-020-02148-5 |
Ejemplares similares
-
Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology
por: García-Peraza-Herrera, Luis C., et al.
Publicado: (2020) -
Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy
por: Rau, Anita, et al.
Publicado: (2019) -
Intraoperative colon perfusion assessment using multispectral imaging
por: Clancy, Neil T., et al.
Publicado: (2021) -
Spatio-temporal classification for polyp
diagnosis
por: González-Bueno Puyal, Juana, et al.
Publicado: (2023) -
Miniature gastrointestinal endoscopy: Now and the future
por: McGoran, John J, et al.
Publicado: (2019)