Cargando…

Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches

This study analyzes and forecasts the long-term Spatio-temporal changes in rainfall using the data from 1901 to 2015 across India at meteorological divisional level. The Pettitt test was employed to detect the abrupt change point in time frame, while the Mann-Kendall (MK) test and Sen’s Innovative t...

Descripción completa

Detalles Bibliográficos
Autores principales: Praveen, Bushra, Talukdar, Swapan, Shahfahad, Mahato, Susanta, Mondal, Jayanta, Sharma, Pritee, Islam, Abu Reza Md. Towfiqul, Rahman, Atiqur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316787/
https://www.ncbi.nlm.nih.gov/pubmed/32587299
http://dx.doi.org/10.1038/s41598-020-67228-7
Descripción
Sumario:This study analyzes and forecasts the long-term Spatio-temporal changes in rainfall using the data from 1901 to 2015 across India at meteorological divisional level. The Pettitt test was employed to detect the abrupt change point in time frame, while the Mann-Kendall (MK) test and Sen’s Innovative trend analysis were performed to analyze the rainfall trend. The Artificial Neural Network-Multilayer Perceptron (ANN-MLP) was employed to forecast the upcoming 15 years rainfall across India. We mapped the rainfall trend pattern for whole country by using the geo-statistical technique like Kriging in ArcGIS environment. Results show that the most of the meteorological divisions exhibited significant negative trend of rainfall in annual and seasonal scales, except seven divisions during. Out of 17 divisions, 11 divisions recorded noteworthy rainfall declining trend for the monsoon season at 0.05% significance level, while the insignificant negative trend of rainfall was detected for the winter and pre-monsoon seasons. Furthermore, the significant negative trend (−8.5) was recorded for overall annual rainfall. Based on the findings of change detection, the most probable year of change detection was occurred primarily after 1960 for most of the meteorological stations. The increasing rainfall trend had observed during the period 1901–1950, while a significant decline rainfall was detected after 1951. The rainfall forecast for upcoming 15 years for all the meteorological divisions’ also exhibit a significant decline in the rainfall. The results derived from ECMWF ERA5 reanalysis data exhibit that increasing/decreasing precipitation convective rate, elevated low cloud cover and inadequate vertically integrated moisture divergence might have influenced on change of rainfall in India. Findings of the study have some implications in water resources management considering the limited availability of water resources and increase in the future water demand.