Cargando…

The Reuniens and Rhomboid Nuclei Are Required for Acquisition of Pavlovian Trace Fear Conditioning in Rats

The reuniens (Re) and rhomboid (Rh) nuclei (ReRh) of the midline thalamus interconnects the hippocampus (HPC) and the medial prefrontal cortex (mPFC). Several studies have suggested that the ReRh participates in various cognitive tasks. However, little is known about the contribution of the ReRh in...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yu-Ju, Chiou, Ruei-Jen, Chang, Chun-hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317181/
https://www.ncbi.nlm.nih.gov/pubmed/32527745
http://dx.doi.org/10.1523/ENEURO.0106-20.2020
Descripción
Sumario:The reuniens (Re) and rhomboid (Rh) nuclei (ReRh) of the midline thalamus interconnects the hippocampus (HPC) and the medial prefrontal cortex (mPFC). Several studies have suggested that the ReRh participates in various cognitive tasks. However, little is known about the contribution of the ReRh in Pavlovian trace fear conditioning, a procedure with a temporal gap between the conditioned stimulus (CS) and the unconditioned stimulus (US), and therefore making it harder for the animals to acquire. Because the HPC and mPFC are involved in trace, but not delay, fear conditioning and given the role of the ReRh in mediating this neurocircuitry, we hypothesized that ReRh inactivation leads to a learning deficit only in trace conditioning. In a series of experiments, we first examined the c-Fos expression in male Long–Evans rats and established that the ReRh was recruited in the encoding, but not the retrieval phase, of fear memory. Next, we performed behavioral pharmacology experiments and found that ReRh inactivation impaired only the acquisition, but not the consolidation or retrieval, of trace fear. However, although the ReRh was recruited during the encoding of delay fear demonstrated by c-Fos results, ReRh inactivation in any phases did not interfere with delay conditioning. Finally, we found that trace fear acquired under ReRh inactivation reprised when the ReRh was brought off-line during retrieval. Together, our data revealed the essential role of the ReRh in a learning task with temporally discontinuous stimuli.