Cargando…
Learning Representations to Predict Intermolecular Interactions on Large-Scale Heterogeneous Molecular Association Network
Molecular components that are functionally interdependent in human cells constitute molecular association networks. Disease can be caused by disturbance of multiple molecular interactions. New biomolecular regulatory mechanisms can be revealed by discovering new biomolecular interactions. To this en...
Autores principales: | Yi, Hai-Cheng, You, Zhu-Hong, Huang, De-Shuang, Guo, Zhen-Hao, Chan, Keith C.C., Li, Yangming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317230/ https://www.ncbi.nlm.nih.gov/pubmed/32580123 http://dx.doi.org/10.1016/j.isci.2020.101261 |
Ejemplares similares
-
A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
Multi-view heterogeneous molecular network representation learning for protein–protein interaction prediction
por: Su, Xiao-Rui, et al.
Publicado: (2022) -
Intermolecular interactions
por: Gans, Werner, et al.
Publicado: (1998) -
Learning local equivariant representations for large-scale atomistic dynamics
por: Musaelian, Albert, et al.
Publicado: (2023) -
Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest
por: You, Zhu-Hong, et al.
Publicado: (2015)