Cargando…
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
Accounting for time‐varying confounding when assessing the causal effects of time‐varying exposures on survival time is challenging. Standard survival methods that incorporate time‐varying confounders as covariates generally yield biased effect estimates. Estimators using weighting by inverse probab...
Autores principales: | Seaman, Shaun, Dukes, Oliver, Keogh, Ruth, Vansteelandt, Stijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317577/ https://www.ncbi.nlm.nih.gov/pubmed/31562652 http://dx.doi.org/10.1111/biom.13158 |
Ejemplares similares
-
Using generalized linear models to implement g-estimation for survival data with time-varying confounding
por: Seaman, Shaun R., et al.
Publicado: (2021) -
Spatial+: A novel approach to spatial confounding
por: Dupont, Emiko, et al.
Publicado: (2022) -
On standardized relative survival
por: Sasieni, Peter, et al.
Publicado: (2016) -
Combining Multiple Imputation and Inverse-Probability
Weighting
por: Seaman, Shaun R, et al.
Publicado: (2012) -
Causal Mediation Analysis with Multiple Mediators
por: Daniel, R M, et al.
Publicado: (2015)