Cargando…
Comparisons Between Hypothesis- and Data-Driven Approaches for Multimorbidity Frailty Index: A Machine Learning Approach
BACKGROUND: Using big data and the theory of cumulative deficits to develop the multimorbidity frailty index (mFI) has become a widely accepted approach in public health and health care services. However, constructing the mFI using the most critical determinants and stratifying different risk groups...
Autores principales: | Peng, Li-Ning, Hsiao, Fei-Yuan, Lee, Wei-Ju, Huang, Shih-Tsung, Chen, Liang-Kung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317629/ https://www.ncbi.nlm.nih.gov/pubmed/32525481 http://dx.doi.org/10.2196/16213 |
Ejemplares similares
-
Predicting mortality and hospitalization of older adults by the multimorbidity frailty index
por: Wen, Yao-Chun, et al.
Publicado: (2017) -
Using Hypothesis-Led Machine Learning and Hierarchical Cluster Analysis to Identify Disease Pathways Prior to Dementia: Longitudinal Cohort Study
por: Huang, Shih-Tsung, et al.
Publicado: (2023) -
Longitudinal changes of frailty in 8 years: comparisons between physical frailty and frailty index
por: Hwang, An-Chun, et al.
Publicado: (2021) -
Derivation of an electronic frailty index for predicting short‐term mortality in heart failure: a machine learning approach
por: Ju, Chengsheng, et al.
Publicado: (2021) -
Machine Learning Approaches for the Frailty Screening: A Narrative Review
por: Oliosi, Eduarda, et al.
Publicado: (2022)