Cargando…
Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis
The methodology discussed in Lekinwala et al., 2020, hereinafter referred to as the ‘parent article’, is used to setup a nation-wide network for background PM(2.5) measurement at strategic locations, optimally placing sites to obtain maximum regionally representative PM(2.5) concentrations with mini...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317679/ https://www.ncbi.nlm.nih.gov/pubmed/32612938 http://dx.doi.org/10.1016/j.mex.2020.100949 |
_version_ | 1783550680876711936 |
---|---|
author | Lekinwala, Nirav L Bharadwaj, Ankur Sunder Raman, Ramya Bhushan, Mani Bali, Kunal Dey, Sagnik |
author_facet | Lekinwala, Nirav L Bharadwaj, Ankur Sunder Raman, Ramya Bhushan, Mani Bali, Kunal Dey, Sagnik |
author_sort | Lekinwala, Nirav L |
collection | PubMed |
description | The methodology discussed in Lekinwala et al., 2020, hereinafter referred to as the ‘parent article’, is used to setup a nation-wide network for background PM(2.5) measurement at strategic locations, optimally placing sites to obtain maximum regionally representative PM(2.5) concentrations with minimum number of sites. Traditionally, in-situ PM(2.5) measurements are obtained for several potential sites and compared to identify the most regionally representative sites [4], Wongphatarakul et al., 1998) at the location. The ‘parent article’ proposes the use of satellite-derived proxy for aerosol (Aerosol Optical Depth, AOD) data in the absence of in-situ PM2.5 measurements. This article focuses on the details about satellite-data processing which forms part of the methodology discussed in the ‘parent article’. Following are some relevant aspects: • High resolution AOD is retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA's Aqua and Terra satellite using Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. The data is stored as grids of size 1200 × 1200 and a total of seven such grids cover the Indian land mass. These grids were merged, regridded and multiplied by conversion factors from GEOS-Chem Chemical Transport Model to obtain PM(2.5) values. Standard set of tools like CDO and NCL are used to manipulate the satellite-data (*.nc files). • The PM(2.5) values are subjected to various statistical analysis using metrics like coefficient of divergence (CoD), Pearson correlation coefficient (PCC) and mutual information (MI). • Computations for CoD, MI are performed using Python codes developed in-house while a function in NumPy module of Python was used for PCC calculations. |
format | Online Article Text |
id | pubmed-7317679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-73176792020-06-30 Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis Lekinwala, Nirav L Bharadwaj, Ankur Sunder Raman, Ramya Bhushan, Mani Bali, Kunal Dey, Sagnik MethodsX Environmental Science The methodology discussed in Lekinwala et al., 2020, hereinafter referred to as the ‘parent article’, is used to setup a nation-wide network for background PM(2.5) measurement at strategic locations, optimally placing sites to obtain maximum regionally representative PM(2.5) concentrations with minimum number of sites. Traditionally, in-situ PM(2.5) measurements are obtained for several potential sites and compared to identify the most regionally representative sites [4], Wongphatarakul et al., 1998) at the location. The ‘parent article’ proposes the use of satellite-derived proxy for aerosol (Aerosol Optical Depth, AOD) data in the absence of in-situ PM2.5 measurements. This article focuses on the details about satellite-data processing which forms part of the methodology discussed in the ‘parent article’. Following are some relevant aspects: • High resolution AOD is retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA's Aqua and Terra satellite using Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. The data is stored as grids of size 1200 × 1200 and a total of seven such grids cover the Indian land mass. These grids were merged, regridded and multiplied by conversion factors from GEOS-Chem Chemical Transport Model to obtain PM(2.5) values. Standard set of tools like CDO and NCL are used to manipulate the satellite-data (*.nc files). • The PM(2.5) values are subjected to various statistical analysis using metrics like coefficient of divergence (CoD), Pearson correlation coefficient (PCC) and mutual information (MI). • Computations for CoD, MI are performed using Python codes developed in-house while a function in NumPy module of Python was used for PCC calculations. Elsevier 2020-06-04 /pmc/articles/PMC7317679/ /pubmed/32612938 http://dx.doi.org/10.1016/j.mex.2020.100949 Text en © 2020 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Environmental Science Lekinwala, Nirav L Bharadwaj, Ankur Sunder Raman, Ramya Bhushan, Mani Bali, Kunal Dey, Sagnik Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis |
title | Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis |
title_full | Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis |
title_fullStr | Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis |
title_full_unstemmed | Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis |
title_short | Weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: Satellite data-based analysis |
title_sort | weight-of-evidence approach to identify regionally representative sites for air-quality monitoring network: satellite data-based analysis |
topic | Environmental Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317679/ https://www.ncbi.nlm.nih.gov/pubmed/32612938 http://dx.doi.org/10.1016/j.mex.2020.100949 |
work_keys_str_mv | AT lekinwalaniravl weightofevidenceapproachtoidentifyregionallyrepresentativesitesforairqualitymonitoringnetworksatellitedatabasedanalysis AT bharadwajankur weightofevidenceapproachtoidentifyregionallyrepresentativesitesforairqualitymonitoringnetworksatellitedatabasedanalysis AT sunderramanramya weightofevidenceapproachtoidentifyregionallyrepresentativesitesforairqualitymonitoringnetworksatellitedatabasedanalysis AT bhushanmani weightofevidenceapproachtoidentifyregionallyrepresentativesitesforairqualitymonitoringnetworksatellitedatabasedanalysis AT balikunal weightofevidenceapproachtoidentifyregionallyrepresentativesitesforairqualitymonitoringnetworksatellitedatabasedanalysis AT deysagnik weightofevidenceapproachtoidentifyregionallyrepresentativesitesforairqualitymonitoringnetworksatellitedatabasedanalysis |