Cargando…
High tumor mutation burden predicts favorable outcome among patients with aggressive histological subtypes of lung adenocarcinoma: A population-based single-institution study
OBJECTIVES: Tumor mutation burden (TMB) is an emerging predictive cancer biomarker. Few studies have addressed the prognostic role of TMB in non-small cell lung carcinoma, with conflicting results. Moreover, the association of TMB with different histological subtypes of lung adenocarcinoma has hithe...
Autores principales: | Talvitie, Eva-Maria, Vilhonen, Heikki, Kurki, Samu, Karlsson, Antti, Orte, Katri, Almangush, Alhadi, Mohamed, Hesham, Liljeroos, Lassi, Singh, Yajuvinder, Leivo, Ilmo, Laitinen, Tarja, Kallajoki, Markku, Taimen, Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317687/ https://www.ncbi.nlm.nih.gov/pubmed/32585428 http://dx.doi.org/10.1016/j.neo.2020.05.004 |
Ejemplares similares
-
Comprehensive genomic profiling of Finnish lung adenocarcinoma cohort reveals high clinical actionability and SMARCA4 altered tumors with variable histology and poor prognosis
por: Talvitie, Eva-Maria, et al.
Publicado: (2022) -
Retrospective Evaluation of Lung Adenocarcinoma Patients Progressing on 1st Line Chemotherapy
por: Vilhonen, Heikki, et al.
Publicado: (2019) -
Biomarkers for Immunotherapy of Oral Squamous Cell Carcinoma: Current Status and Challenges
por: Almangush, Alhadi, et al.
Publicado: (2021) -
Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2022) -
Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2023)