Cargando…

The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)

Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Shirasawa, Kenta, Yakushiji, Hiroshi, Nishimura, Ryotaro, Morita, Takeshige, Jikumaru, Shota, Ikegami, Hidetoshi, Toyoda, Atsushi, Hirakawa, Hideki, Isobe, Sachiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317799/
https://www.ncbi.nlm.nih.gov/pubmed/31978270
http://dx.doi.org/10.1111/tpj.14703
_version_ 1783550709135835136
author Shirasawa, Kenta
Yakushiji, Hiroshi
Nishimura, Ryotaro
Morita, Takeshige
Jikumaru, Shota
Ikegami, Hidetoshi
Toyoda, Atsushi
Hirakawa, Hideki
Isobe, Sachiko
author_facet Shirasawa, Kenta
Yakushiji, Hiroshi
Nishimura, Ryotaro
Morita, Takeshige
Jikumaru, Shota
Ikegami, Hidetoshi
Toyoda, Atsushi
Hirakawa, Hideki
Isobe, Sachiko
author_sort Shirasawa, Kenta
collection PubMed
description Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single‐molecule real‐time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high‐confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double‐digest restriction‐site‐associated DNA sequencing. Subsequent linkage analysis and whole‐genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome‐wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease‐resistance breeding programmes in fig.
format Online
Article
Text
id pubmed-7317799
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73177992020-06-29 The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica) Shirasawa, Kenta Yakushiji, Hiroshi Nishimura, Ryotaro Morita, Takeshige Jikumaru, Shota Ikegami, Hidetoshi Toyoda, Atsushi Hirakawa, Hideki Isobe, Sachiko Plant J Resource Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single‐molecule real‐time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high‐confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double‐digest restriction‐site‐associated DNA sequencing. Subsequent linkage analysis and whole‐genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome‐wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease‐resistance breeding programmes in fig. John Wiley and Sons Inc. 2020-02-24 2020-06 /pmc/articles/PMC7317799/ /pubmed/31978270 http://dx.doi.org/10.1111/tpj.14703 Text en © 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Resource
Shirasawa, Kenta
Yakushiji, Hiroshi
Nishimura, Ryotaro
Morita, Takeshige
Jikumaru, Shota
Ikegami, Hidetoshi
Toyoda, Atsushi
Hirakawa, Hideki
Isobe, Sachiko
The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)
title The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)
title_full The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)
title_fullStr The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)
title_full_unstemmed The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)
title_short The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica)
title_sort ficus erecta genome aids ceratocystis canker resistance breeding in common fig (f. carica)
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317799/
https://www.ncbi.nlm.nih.gov/pubmed/31978270
http://dx.doi.org/10.1111/tpj.14703
work_keys_str_mv AT shirasawakenta theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT yakushijihiroshi theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT nishimuraryotaro theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT moritatakeshige theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT jikumarushota theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT ikegamihidetoshi theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT toyodaatsushi theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT hirakawahideki theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT isobesachiko theficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT shirasawakenta ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT yakushijihiroshi ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT nishimuraryotaro ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT moritatakeshige ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT jikumarushota ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT ikegamihidetoshi ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT toyodaatsushi ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT hirakawahideki ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica
AT isobesachiko ficuserectagenomeaidsceratocystiscankerresistancebreedingincommonfigfcarica