Cargando…

Pathway Dependence in Redox‐Driven Metal–Organic Gels

Pathway dependence is common in self‐assembly. Herein, the importance of pathway dependence for redox‐driven gels is shown by constructing a Fe(II)/Fe(III) redox‐based metal–organic gel system is shown. In situ oxidation of the Fe(II) ions at different rates results in conversion of a Fe(II) gel int...

Descripción completa

Detalles Bibliográficos
Autores principales: Panja, Santanu, Adams, Dave J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317820/
https://www.ncbi.nlm.nih.gov/pubmed/32125039
http://dx.doi.org/10.1002/chem.202001051
_version_ 1783550713858621440
author Panja, Santanu
Adams, Dave J.
author_facet Panja, Santanu
Adams, Dave J.
author_sort Panja, Santanu
collection PubMed
description Pathway dependence is common in self‐assembly. Herein, the importance of pathway dependence for redox‐driven gels is shown by constructing a Fe(II)/Fe(III) redox‐based metal–organic gel system is shown. In situ oxidation of the Fe(II) ions at different rates results in conversion of a Fe(II) gel into a Fe(III) organic gel, which controls the material properties, such as gel stiffness, gel strength, and an unusual swelling behaviour, is described. The rate of formation of Fe(III) ions determines the extent of intermolecular interactions and so whether gelation or precipitation occurs.
format Online
Article
Text
id pubmed-7317820
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73178202020-06-29 Pathway Dependence in Redox‐Driven Metal–Organic Gels Panja, Santanu Adams, Dave J. Chemistry Communications Pathway dependence is common in self‐assembly. Herein, the importance of pathway dependence for redox‐driven gels is shown by constructing a Fe(II)/Fe(III) redox‐based metal–organic gel system is shown. In situ oxidation of the Fe(II) ions at different rates results in conversion of a Fe(II) gel into a Fe(III) organic gel, which controls the material properties, such as gel stiffness, gel strength, and an unusual swelling behaviour, is described. The rate of formation of Fe(III) ions determines the extent of intermolecular interactions and so whether gelation or precipitation occurs. John Wiley and Sons Inc. 2020-04-30 2020-05-15 /pmc/articles/PMC7317820/ /pubmed/32125039 http://dx.doi.org/10.1002/chem.202001051 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Panja, Santanu
Adams, Dave J.
Pathway Dependence in Redox‐Driven Metal–Organic Gels
title Pathway Dependence in Redox‐Driven Metal–Organic Gels
title_full Pathway Dependence in Redox‐Driven Metal–Organic Gels
title_fullStr Pathway Dependence in Redox‐Driven Metal–Organic Gels
title_full_unstemmed Pathway Dependence in Redox‐Driven Metal–Organic Gels
title_short Pathway Dependence in Redox‐Driven Metal–Organic Gels
title_sort pathway dependence in redox‐driven metal–organic gels
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317820/
https://www.ncbi.nlm.nih.gov/pubmed/32125039
http://dx.doi.org/10.1002/chem.202001051
work_keys_str_mv AT panjasantanu pathwaydependenceinredoxdrivenmetalorganicgels
AT adamsdavej pathwaydependenceinredoxdrivenmetalorganicgels