Cargando…

Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu‐Exchanged Mordenite

Copper‐oxo clusters exchanged in zeolite mordenite are active in the stoichiometric conversion of methane to methanol at low temperatures. Here, we show an unprecedented methanol yield per Cu of 0.6, with a 90–95 % selectivity, on a MOR solely containing [Cu(3)(μ‐O)(3)](2+) active sites. DFT calcula...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jian, Lee, Insu, Khramenkova, Elena, Wang, Meng, Peng, Bo, Gutiérrez, Oliver Y., Fulton, John L., Camaioni, Donald M., Khare, Rachit, Jentys, Andreas, Haller, Gary L., Pidko, Evgeny A., Sanchez‐Sanchez, Maricruz, Lercher, Johannes A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317825/
https://www.ncbi.nlm.nih.gov/pubmed/32092206
http://dx.doi.org/10.1002/chem.202000772
Descripción
Sumario:Copper‐oxo clusters exchanged in zeolite mordenite are active in the stoichiometric conversion of methane to methanol at low temperatures. Here, we show an unprecedented methanol yield per Cu of 0.6, with a 90–95 % selectivity, on a MOR solely containing [Cu(3)(μ‐O)(3)](2+) active sites. DFT calculations, spectroscopic characterization and kinetic analysis show that increasing the chemical potential of methane enables the utilization of two μ‐oxo bridge oxygen out of the three available in the tricopper‐oxo cluster structure. Methanol and methoxy groups are stabilized in parallel, leading to methanol desorption in the presence of water.