Cargando…
pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes
Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen‐evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn(4)CaO(5) cluster. The high degree of conservation of accessible negatively...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318136/ https://www.ncbi.nlm.nih.gov/pubmed/31930693 http://dx.doi.org/10.1002/cbic.201900739 |
_version_ | 1783550776189124608 |
---|---|
author | Gerland, Lisa Friedrich, Daniel Hopf, Linus Donovan, Eavan J. Wallmann, Arndt Erdmann, Natalja Diehl, Anne Bommer, Martin Buzar, Krzysztof Ibrahim, Mohamed Schmieder, Peter Dobbek, Holger Zouni, Athina Bondar, Ana‐Nicoleta Dau, Holger Oschkinat, Hartmut |
author_facet | Gerland, Lisa Friedrich, Daniel Hopf, Linus Donovan, Eavan J. Wallmann, Arndt Erdmann, Natalja Diehl, Anne Bommer, Martin Buzar, Krzysztof Ibrahim, Mohamed Schmieder, Peter Dobbek, Holger Zouni, Athina Bondar, Ana‐Nicoleta Dau, Holger Oschkinat, Hartmut |
author_sort | Gerland, Lisa |
collection | PubMed |
description | Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen‐evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn(4)CaO(5) cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pK (a) values of water‐accessible aspartate and glutamate side‐chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pK (a) values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH‐dependent changes in backbone chemical shifts in the area of the lumen‐exposed loops are observed, indicating conformational changes. In conclusion, we present a site‐specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis. |
format | Online Article Text |
id | pubmed-7318136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73181362020-06-29 pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes Gerland, Lisa Friedrich, Daniel Hopf, Linus Donovan, Eavan J. Wallmann, Arndt Erdmann, Natalja Diehl, Anne Bommer, Martin Buzar, Krzysztof Ibrahim, Mohamed Schmieder, Peter Dobbek, Holger Zouni, Athina Bondar, Ana‐Nicoleta Dau, Holger Oschkinat, Hartmut Chembiochem Full Papers Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen‐evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn(4)CaO(5) cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pK (a) values of water‐accessible aspartate and glutamate side‐chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pK (a) values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH‐dependent changes in backbone chemical shifts in the area of the lumen‐exposed loops are observed, indicating conformational changes. In conclusion, we present a site‐specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis. John Wiley and Sons Inc. 2020-03-05 2020-06-02 /pmc/articles/PMC7318136/ /pubmed/31930693 http://dx.doi.org/10.1002/cbic.201900739 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Gerland, Lisa Friedrich, Daniel Hopf, Linus Donovan, Eavan J. Wallmann, Arndt Erdmann, Natalja Diehl, Anne Bommer, Martin Buzar, Krzysztof Ibrahim, Mohamed Schmieder, Peter Dobbek, Holger Zouni, Athina Bondar, Ana‐Nicoleta Dau, Holger Oschkinat, Hartmut pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes |
title | pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes |
title_full | pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes |
title_fullStr | pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes |
title_full_unstemmed | pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes |
title_short | pH‐Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes |
title_sort | ph‐dependent protonation of surface carboxylate groups in psbo enables local buffering and triggers structural changes |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318136/ https://www.ncbi.nlm.nih.gov/pubmed/31930693 http://dx.doi.org/10.1002/cbic.201900739 |
work_keys_str_mv | AT gerlandlisa phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT friedrichdaniel phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT hopflinus phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT donovaneavanj phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT wallmannarndt phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT erdmannnatalja phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT diehlanne phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT bommermartin phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT buzarkrzysztof phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT ibrahimmohamed phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT schmiederpeter phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT dobbekholger phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT zouniathina phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT bondarananicoleta phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT dauholger phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges AT oschkinathartmut phdependentprotonationofsurfacecarboxylategroupsinpsboenableslocalbufferingandtriggersstructuralchanges |