Cargando…

Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling

Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N‐substituted glycine) „peptoids“ are of great interest as they resist proteolysis and can inhibit a wide sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasan, Abshar, Lee, Kyueui, Tewari, Kunal, Pandey, Lalit M., Messersmith, Phillip B., Faulds, Karen, Maclean, Michelle, Lau, King Hang Aaron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318250/
https://www.ncbi.nlm.nih.gov/pubmed/32059067
http://dx.doi.org/10.1002/chem.202000746
_version_ 1783550803810713600
author Hasan, Abshar
Lee, Kyueui
Tewari, Kunal
Pandey, Lalit M.
Messersmith, Phillip B.
Faulds, Karen
Maclean, Michelle
Lau, King Hang Aaron
author_facet Hasan, Abshar
Lee, Kyueui
Tewari, Kunal
Pandey, Lalit M.
Messersmith, Phillip B.
Faulds, Karen
Maclean, Michelle
Lau, King Hang Aaron
author_sort Hasan, Abshar
collection PubMed
description Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N‐substituted glycine) „peptoids“ are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP‐mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne–azide „click“ coupling on amino‐functionalized surfaces. Our results verified that the N‐ and C‐terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a „volumetric“ spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti‐biofouling.
format Online
Article
Text
id pubmed-7318250
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73182502020-06-29 Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling Hasan, Abshar Lee, Kyueui Tewari, Kunal Pandey, Lalit M. Messersmith, Phillip B. Faulds, Karen Maclean, Michelle Lau, King Hang Aaron Chemistry Communications Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N‐substituted glycine) „peptoids“ are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP‐mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne–azide „click“ coupling on amino‐functionalized surfaces. Our results verified that the N‐ and C‐terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a „volumetric“ spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti‐biofouling. John Wiley and Sons Inc. 2020-04-21 2020-05-07 /pmc/articles/PMC7318250/ /pubmed/32059067 http://dx.doi.org/10.1002/chem.202000746 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Hasan, Abshar
Lee, Kyueui
Tewari, Kunal
Pandey, Lalit M.
Messersmith, Phillip B.
Faulds, Karen
Maclean, Michelle
Lau, King Hang Aaron
Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling
title Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling
title_full Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling
title_fullStr Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling
title_full_unstemmed Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling
title_short Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti‐Biofouling
title_sort surface design for immobilization of an antimicrobial peptide mimic for efficient anti‐biofouling
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318250/
https://www.ncbi.nlm.nih.gov/pubmed/32059067
http://dx.doi.org/10.1002/chem.202000746
work_keys_str_mv AT hasanabshar surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT leekyueui surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT tewarikunal surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT pandeylalitm surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT messersmithphillipb surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT fauldskaren surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT macleanmichelle surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling
AT laukinghangaaron surfacedesignforimmobilizationofanantimicrobialpeptidemimicforefficientantibiofouling