Cargando…
Magnesocenophane‐Catalyzed Amine Borane Dehydrocoupling
The Lewis acidities of a series of [n]magnesocenophanes (1 a–d) have been investigated computationally and found to be a function of the tilt of the cyclopentadienyl moieties. Their catalytic abilities in amine borane dehydrogenation/dehydrocoupling reactions have been probed, and C[1]magnesocenopha...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318289/ https://www.ncbi.nlm.nih.gov/pubmed/32052880 http://dx.doi.org/10.1002/chem.202000106 |
Sumario: | The Lewis acidities of a series of [n]magnesocenophanes (1 a–d) have been investigated computationally and found to be a function of the tilt of the cyclopentadienyl moieties. Their catalytic abilities in amine borane dehydrogenation/dehydrocoupling reactions have been probed, and C[1]magnesocenophane (1 a) has been shown to effectively catalyze the dehydrogenation/dehydrocoupling of dimethylamine borane (2 a) and diisopropylamine borane (2 b) under ambient conditions. Furthermore, the mechanism of the reaction with 2 a has been investigated experimentally and computationally, and the results imply a ligand‐assisted mechanism involving stepwise proton and hydride transfer, with dimethylaminoborane as the key intermediate. |
---|