Cargando…

Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition

Chiral eniminium salts, prepared from α,β‐unsaturated aldehydes and a chiral proline derived secondary amine, underwent, upon irradiation with visible light, a ruthenium‐catalyzed (2.5 mol %) intermolecular [2+2] photocycloaddition to olefins, which after hydrolysis led to chiral cyclobutanecarbalde...

Descripción completa

Detalles Bibliográficos
Autores principales: Hörmann, Fabian M., Kerzig, Christoph, Chung, Tim S., Bauer, Andreas, Wenger, Oliver S., Bach, Thorsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318320/
https://www.ncbi.nlm.nih.gov/pubmed/32166853
http://dx.doi.org/10.1002/anie.202001634
Descripción
Sumario:Chiral eniminium salts, prepared from α,β‐unsaturated aldehydes and a chiral proline derived secondary amine, underwent, upon irradiation with visible light, a ruthenium‐catalyzed (2.5 mol %) intermolecular [2+2] photocycloaddition to olefins, which after hydrolysis led to chiral cyclobutanecarbaldehydes (17 examples, 49–74 % yield), with high diastereo‐ and enantioselectivities. Ru(bpz)(3)(PF(6))(2) was utilized as the ruthenium catalyst and laser flash photolysis studies show that the catalyst operates exclusively by triplet‐energy transfer (sensitization). A catalytic system was devised with a chiral secondary amine co‐catalyst. In the catalytic reactions, Ru(bpy)(3)(PF(6))(2) was employed, and laser flash photolysis experiments suggest it undergoes both electron and energy transfer. However, experimental evidence supports the hypothesis that energy transfer is the only productive quenching mechanism. Control experiments using Ir(ppy)(3) showed no catalysis for the intermolecular [2+2] photocycloaddition of an eniminium ion.