Cargando…
Comparison of methods for handling covariate missingness in propensity score estimation with a binary exposure
BACKGROUND: Causal effect estimation with observational data is subject to bias due to confounding, which is often controlled for using propensity scores. One unresolved issue in propensity score estimation is how to handle missing values in covariates. METHOD: Several approaches have been proposed...
Autores principales: | Coffman, Donna L., Zhou, Jiangxiu, Cai, Xizhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318364/ https://www.ncbi.nlm.nih.gov/pubmed/32586271 http://dx.doi.org/10.1186/s12874-020-01053-4 |
Ejemplares similares
-
Missing binary outcomes under covariate‐dependent missingness in cluster randomised trials
por: Hossain, Anower, et al.
Publicado: (2017) -
Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
por: Bottigliengo, Daniele, et al.
Publicado: (2021) -
Estimation methods with ordered exposure subject to measurement error and missingness in semi-ecological design
por: Kim, Hyang-Mi, et al.
Publicado: (2012) -
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Missing continuous outcomes under covariate dependent missingness in cluster randomised trials
por: Hossain, Anower, et al.
Publicado: (2016)