Cargando…
Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults
BACKGROUND: There is much interest in the use of prognostic and diagnostic prediction models in all areas of clinical medicine. The use of machine learning to improve prognostic and diagnostic accuracy in this area has been increasing at the expense of classic statistical models. Previous studies ha...
Autores principales: | Lynam, Anita L., Dennis, John M., Owen, Katharine R., Oram, Richard A., Jones, Angus G., Shields, Beverley M., Ferrat, Lauric A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318367/ https://www.ncbi.nlm.nih.gov/pubmed/32607451 http://dx.doi.org/10.1186/s41512-020-00075-2 |
Ejemplares similares
-
Development and validation of multivariable clinical diagnostic models to identify type 1 diabetes requiring rapid insulin therapy in adults aged 18–50 years
por: Lynam, Anita, et al.
Publicado: (2019) -
Type 1 diabetes defined by severe insulin deficiency occurs after 30 years of age and is commonly treated as type 2 diabetes
por: Thomas, Nicholas J., et al.
Publicado: (2019) -
Type 1 Diabetes Risk Phenotypes Using Cluster Analysis
por: You, Lu, et al.
Publicado: (2023) -
Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
por: Ebrahimzadeh, Farzad, et al.
Publicado: (2015) -
Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine
por: Venkatasubramaniam, Ashwini, et al.
Publicado: (2023)