Cargando…

A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy

The crystalline‐to‐vitreous phase transformation of a SiO(2) bilayer supported on Ru(0001) was studied by time‐dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simul...

Descripción completa

Detalles Bibliográficos
Autores principales: Klemm, Hagen W., Prieto, Mauricio J., Xiong, Feng, Hassine, Ghada B., Heyde, Markus, Menzel, Dietrich, Sierka, Marek, Schmidt, Thomas, Freund, Hans‐Joachim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318588/
https://www.ncbi.nlm.nih.gov/pubmed/32173977
http://dx.doi.org/10.1002/anie.202002514
_version_ 1783550886351470592
author Klemm, Hagen W.
Prieto, Mauricio J.
Xiong, Feng
Hassine, Ghada B.
Heyde, Markus
Menzel, Dietrich
Sierka, Marek
Schmidt, Thomas
Freund, Hans‐Joachim
author_facet Klemm, Hagen W.
Prieto, Mauricio J.
Xiong, Feng
Hassine, Ghada B.
Heyde, Markus
Menzel, Dietrich
Sierka, Marek
Schmidt, Thomas
Freund, Hans‐Joachim
author_sort Klemm, Hagen W.
collection PubMed
description The crystalline‐to‐vitreous phase transformation of a SiO(2) bilayer supported on Ru(0001) was studied by time‐dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simulations show that the formation of a Stone–Wales‐type of defect follows a complex mechanism, where the two layers show decoupled behavior in terms of chemical bond rearrangements. The calculated activation energy of the rate‐determining step for the formation of a Stone—Wales‐type of defect (4.3 eV) agrees with the experimental value. Charge transfer between SiO(2) bilayer and Ru(0001) support lowers the activation energy for breaking the Si−O bond compared to the unsupported film. Pre‐exponential factors obtained in UHV and in O(2) atmospheres differ significantly, suggesting that the interfacial ORu underneath the SiO(2) bilayer plays a role on how the disordering propagates within the film.
format Online
Article
Text
id pubmed-7318588
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73185882020-06-29 A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy Klemm, Hagen W. Prieto, Mauricio J. Xiong, Feng Hassine, Ghada B. Heyde, Markus Menzel, Dietrich Sierka, Marek Schmidt, Thomas Freund, Hans‐Joachim Angew Chem Int Ed Engl Research Articles The crystalline‐to‐vitreous phase transformation of a SiO(2) bilayer supported on Ru(0001) was studied by time‐dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simulations show that the formation of a Stone–Wales‐type of defect follows a complex mechanism, where the two layers show decoupled behavior in terms of chemical bond rearrangements. The calculated activation energy of the rate‐determining step for the formation of a Stone—Wales‐type of defect (4.3 eV) agrees with the experimental value. Charge transfer between SiO(2) bilayer and Ru(0001) support lowers the activation energy for breaking the Si−O bond compared to the unsupported film. Pre‐exponential factors obtained in UHV and in O(2) atmospheres differ significantly, suggesting that the interfacial ORu underneath the SiO(2) bilayer plays a role on how the disordering propagates within the film. John Wiley and Sons Inc. 2020-04-15 2020-06-22 /pmc/articles/PMC7318588/ /pubmed/32173977 http://dx.doi.org/10.1002/anie.202002514 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Klemm, Hagen W.
Prieto, Mauricio J.
Xiong, Feng
Hassine, Ghada B.
Heyde, Markus
Menzel, Dietrich
Sierka, Marek
Schmidt, Thomas
Freund, Hans‐Joachim
A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
title A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
title_full A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
title_fullStr A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
title_full_unstemmed A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
title_short A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
title_sort silica bilayer supported on ru(0001): following the crystalline‐to vitreous transformation in real time with spectro‐microscopy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318588/
https://www.ncbi.nlm.nih.gov/pubmed/32173977
http://dx.doi.org/10.1002/anie.202002514
work_keys_str_mv AT klemmhagenw asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT prietomauricioj asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT xiongfeng asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT hassineghadab asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT heydemarkus asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT menzeldietrich asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT sierkamarek asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT schmidtthomas asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT freundhansjoachim asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT klemmhagenw silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT prietomauricioj silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT xiongfeng silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT hassineghadab silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT heydemarkus silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT menzeldietrich silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT sierkamarek silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT schmidtthomas silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy
AT freundhansjoachim silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy