Cargando…
A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy
The crystalline‐to‐vitreous phase transformation of a SiO(2) bilayer supported on Ru(0001) was studied by time‐dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simul...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318588/ https://www.ncbi.nlm.nih.gov/pubmed/32173977 http://dx.doi.org/10.1002/anie.202002514 |
_version_ | 1783550886351470592 |
---|---|
author | Klemm, Hagen W. Prieto, Mauricio J. Xiong, Feng Hassine, Ghada B. Heyde, Markus Menzel, Dietrich Sierka, Marek Schmidt, Thomas Freund, Hans‐Joachim |
author_facet | Klemm, Hagen W. Prieto, Mauricio J. Xiong, Feng Hassine, Ghada B. Heyde, Markus Menzel, Dietrich Sierka, Marek Schmidt, Thomas Freund, Hans‐Joachim |
author_sort | Klemm, Hagen W. |
collection | PubMed |
description | The crystalline‐to‐vitreous phase transformation of a SiO(2) bilayer supported on Ru(0001) was studied by time‐dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simulations show that the formation of a Stone–Wales‐type of defect follows a complex mechanism, where the two layers show decoupled behavior in terms of chemical bond rearrangements. The calculated activation energy of the rate‐determining step for the formation of a Stone—Wales‐type of defect (4.3 eV) agrees with the experimental value. Charge transfer between SiO(2) bilayer and Ru(0001) support lowers the activation energy for breaking the Si−O bond compared to the unsupported film. Pre‐exponential factors obtained in UHV and in O(2) atmospheres differ significantly, suggesting that the interfacial ORu underneath the SiO(2) bilayer plays a role on how the disordering propagates within the film. |
format | Online Article Text |
id | pubmed-7318588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73185882020-06-29 A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy Klemm, Hagen W. Prieto, Mauricio J. Xiong, Feng Hassine, Ghada B. Heyde, Markus Menzel, Dietrich Sierka, Marek Schmidt, Thomas Freund, Hans‐Joachim Angew Chem Int Ed Engl Research Articles The crystalline‐to‐vitreous phase transformation of a SiO(2) bilayer supported on Ru(0001) was studied by time‐dependent LEED, local XPS, and DFT calculations. The silica bilayer system has parallels to 3D silica glass and can be used to understand the mechanism of the disorder transition. DFT simulations show that the formation of a Stone–Wales‐type of defect follows a complex mechanism, where the two layers show decoupled behavior in terms of chemical bond rearrangements. The calculated activation energy of the rate‐determining step for the formation of a Stone—Wales‐type of defect (4.3 eV) agrees with the experimental value. Charge transfer between SiO(2) bilayer and Ru(0001) support lowers the activation energy for breaking the Si−O bond compared to the unsupported film. Pre‐exponential factors obtained in UHV and in O(2) atmospheres differ significantly, suggesting that the interfacial ORu underneath the SiO(2) bilayer plays a role on how the disordering propagates within the film. John Wiley and Sons Inc. 2020-04-15 2020-06-22 /pmc/articles/PMC7318588/ /pubmed/32173977 http://dx.doi.org/10.1002/anie.202002514 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Klemm, Hagen W. Prieto, Mauricio J. Xiong, Feng Hassine, Ghada B. Heyde, Markus Menzel, Dietrich Sierka, Marek Schmidt, Thomas Freund, Hans‐Joachim A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy |
title | A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy |
title_full | A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy |
title_fullStr | A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy |
title_full_unstemmed | A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy |
title_short | A Silica Bilayer Supported on Ru(0001): Following the Crystalline‐to Vitreous Transformation in Real Time with Spectro‐microscopy |
title_sort | silica bilayer supported on ru(0001): following the crystalline‐to vitreous transformation in real time with spectro‐microscopy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318588/ https://www.ncbi.nlm.nih.gov/pubmed/32173977 http://dx.doi.org/10.1002/anie.202002514 |
work_keys_str_mv | AT klemmhagenw asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT prietomauricioj asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT xiongfeng asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT hassineghadab asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT heydemarkus asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT menzeldietrich asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT sierkamarek asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT schmidtthomas asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT freundhansjoachim asilicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT klemmhagenw silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT prietomauricioj silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT xiongfeng silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT hassineghadab silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT heydemarkus silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT menzeldietrich silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT sierkamarek silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT schmidtthomas silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy AT freundhansjoachim silicabilayersupportedonru0001followingthecrystallinetovitreoustransformationinrealtimewithspectromicroscopy |