Cargando…

Green‐Light Activation of Push–Pull Ruthenium(II) Complexes

Synthesis, characterization, electrochemistry, and photophysics of homo‐ and heteroleptic ruthenium(II) complexes [Ru(cpmp)(2)](2+) (2(2+)) and [Ru(cpmp)(ddpd)](2+) (3(2+)) bearing the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐dipyridin‐2...

Descripción completa

Detalles Bibliográficos
Autores principales: Moll, Johannnes, Wang, Cui, Päpcke, Ayla, Förster, Christoph, Resch‐Genger, Ute, Lochbrunner, Stefan, Heinze, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318647/
https://www.ncbi.nlm.nih.gov/pubmed/32162414
http://dx.doi.org/10.1002/chem.202000871
_version_ 1783550900112982016
author Moll, Johannnes
Wang, Cui
Päpcke, Ayla
Förster, Christoph
Resch‐Genger, Ute
Lochbrunner, Stefan
Heinze, Katja
author_facet Moll, Johannnes
Wang, Cui
Päpcke, Ayla
Förster, Christoph
Resch‐Genger, Ute
Lochbrunner, Stefan
Heinze, Katja
author_sort Moll, Johannnes
collection PubMed
description Synthesis, characterization, electrochemistry, and photophysics of homo‐ and heteroleptic ruthenium(II) complexes [Ru(cpmp)(2)](2+) (2(2+)) and [Ru(cpmp)(ddpd)](2+) (3(2+)) bearing the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐dipyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) are reported. The complexes possess one (3(2+)) or two (2(2+)) electron‐deficient dipyridyl ketone fragments as electron‐accepting sites enabling intraligand charge transfer (ILCT), ligand‐to‐ligand charge transfer (LL'CT) and low‐energy metal‐to‐ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 2(2+) shows (3)MLCT phosphorescence in the red to near‐infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a (3)MLCT lifetime of 477 ns, whereas 3(2+) is much less luminescent. This different behavior is ascribed to the energy gap law and the shape of the parasitic excited (3)MC state potential energy surface. This study highlights the importance of the excited‐state energies and geometries for the actual excited‐state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 2(2+) paving the way to photocatalytic applications using low‐energy green light as exemplified with the green‐light‐sensitized thiol–ene click reaction.
format Online
Article
Text
id pubmed-7318647
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73186472020-06-29 Green‐Light Activation of Push–Pull Ruthenium(II) Complexes Moll, Johannnes Wang, Cui Päpcke, Ayla Förster, Christoph Resch‐Genger, Ute Lochbrunner, Stefan Heinze, Katja Chemistry Full Papers Synthesis, characterization, electrochemistry, and photophysics of homo‐ and heteroleptic ruthenium(II) complexes [Ru(cpmp)(2)](2+) (2(2+)) and [Ru(cpmp)(ddpd)](2+) (3(2+)) bearing the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐dipyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) are reported. The complexes possess one (3(2+)) or two (2(2+)) electron‐deficient dipyridyl ketone fragments as electron‐accepting sites enabling intraligand charge transfer (ILCT), ligand‐to‐ligand charge transfer (LL'CT) and low‐energy metal‐to‐ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 2(2+) shows (3)MLCT phosphorescence in the red to near‐infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a (3)MLCT lifetime of 477 ns, whereas 3(2+) is much less luminescent. This different behavior is ascribed to the energy gap law and the shape of the parasitic excited (3)MC state potential energy surface. This study highlights the importance of the excited‐state energies and geometries for the actual excited‐state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 2(2+) paving the way to photocatalytic applications using low‐energy green light as exemplified with the green‐light‐sensitized thiol–ene click reaction. John Wiley and Sons Inc. 2020-04-30 2020-05-26 /pmc/articles/PMC7318647/ /pubmed/32162414 http://dx.doi.org/10.1002/chem.202000871 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Moll, Johannnes
Wang, Cui
Päpcke, Ayla
Förster, Christoph
Resch‐Genger, Ute
Lochbrunner, Stefan
Heinze, Katja
Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
title Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
title_full Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
title_fullStr Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
title_full_unstemmed Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
title_short Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
title_sort green‐light activation of push–pull ruthenium(ii) complexes
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318647/
https://www.ncbi.nlm.nih.gov/pubmed/32162414
http://dx.doi.org/10.1002/chem.202000871
work_keys_str_mv AT molljohannnes greenlightactivationofpushpullrutheniumiicomplexes
AT wangcui greenlightactivationofpushpullrutheniumiicomplexes
AT papckeayla greenlightactivationofpushpullrutheniumiicomplexes
AT forsterchristoph greenlightactivationofpushpullrutheniumiicomplexes
AT reschgengerute greenlightactivationofpushpullrutheniumiicomplexes
AT lochbrunnerstefan greenlightactivationofpushpullrutheniumiicomplexes
AT heinzekatja greenlightactivationofpushpullrutheniumiicomplexes