Cargando…
Organoboron‐Functionalization Enables the Hierarchical Assembly of Giant Polyoxometalate Nanocapsules
The aggregation of molecular metal oxides into larger superstructures can bridge the gap between molecular compounds and solid‐state materials. Here, we report that functionalization of polyoxotungstates with organo‐boron substituents leads to giant polyoxometalate‐based nanocapsules with dimensions...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318661/ https://www.ncbi.nlm.nih.gov/pubmed/32227580 http://dx.doi.org/10.1002/anie.202003550 |
Sumario: | The aggregation of molecular metal oxides into larger superstructures can bridge the gap between molecular compounds and solid‐state materials. Here, we report that functionalization of polyoxotungstates with organo‐boron substituents leads to giant polyoxometalate‐based nanocapsules with dimensions of up to 4 nm. A “lock and key” mechanism enables the site‐specific anchoring of aromatic organo‐boronic acids to metal‐functionalized Dawson anions [M(3)P(2)W(15)O(62)](9−) (M=Ta(V) or Nb(V)), resulting in unique nanocapsules containing up to twelve POM units. Experimental and theoretical studies provide initial insights into the role of the organo‐boron moieties and the metal‐functionalized POMs for the assembly of the giant aggregates. The study therefore lays the foundations for the design of organo‐POM‐based functional nanostructures. |
---|