Cargando…

Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy

The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by sol...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Brien, Evan S., Fuglestad, Brian, Lessen, Henry J., Stetz, Matthew A., Lin, Danny W., Marques, Bryan S., Gupta, Kushol, Fleming, Karen G., Wand, A. Joshua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318686/
https://www.ncbi.nlm.nih.gov/pubmed/32277554
http://dx.doi.org/10.1002/anie.202003527
_version_ 1783550909828038656
author O'Brien, Evan S.
Fuglestad, Brian
Lessen, Henry J.
Stetz, Matthew A.
Lin, Danny W.
Marques, Bryan S.
Gupta, Kushol
Fleming, Karen G.
Wand, A. Joshua
author_facet O'Brien, Evan S.
Fuglestad, Brian
Lessen, Henry J.
Stetz, Matthew A.
Lin, Danny W.
Marques, Bryan S.
Gupta, Kushol
Fleming, Karen G.
Wand, A. Joshua
author_sort O'Brien, Evan S.
collection PubMed
description The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.
format Online
Article
Text
id pubmed-7318686
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73186862020-06-29 Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy O'Brien, Evan S. Fuglestad, Brian Lessen, Henry J. Stetz, Matthew A. Lin, Danny W. Marques, Bryan S. Gupta, Kushol Fleming, Karen G. Wand, A. Joshua Angew Chem Int Ed Engl Research Articles The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling. John Wiley and Sons Inc. 2020-04-30 2020-06-26 /pmc/articles/PMC7318686/ /pubmed/32277554 http://dx.doi.org/10.1002/anie.202003527 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
O'Brien, Evan S.
Fuglestad, Brian
Lessen, Henry J.
Stetz, Matthew A.
Lin, Danny W.
Marques, Bryan S.
Gupta, Kushol
Fleming, Karen G.
Wand, A. Joshua
Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy
title Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy
title_full Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy
title_fullStr Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy
title_full_unstemmed Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy
title_short Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy
title_sort membrane proteins have distinct fast internal motion and residual conformational entropy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318686/
https://www.ncbi.nlm.nih.gov/pubmed/32277554
http://dx.doi.org/10.1002/anie.202003527
work_keys_str_mv AT obrienevans membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT fuglestadbrian membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT lessenhenryj membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT stetzmatthewa membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT lindannyw membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT marquesbryans membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT guptakushol membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT flemingkareng membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy
AT wandajoshua membraneproteinshavedistinctfastinternalmotionandresidualconformationalentropy