Cargando…

Genetic structure among morphotypes of the endangered Brazilian palm Euterpe edulis Mart (Arecaceae)

Euterpe edulis (Arecaceae) Mart has high ecological and economic importance providing food resources for more than 58 species of birds and 20 species of mammals, including humans. E. edulis is the second most exploited nontimber product from Brazilian Atlantic Forest. Due to overexploitation and des...

Descripción completa

Detalles Bibliográficos
Autores principales: Coelho, Gislaine Mendes, Santos, Alesandro Souza, de Menezes, Ivandilson Pessoa Pinto, Tarazi, Roberto, Souza, Fernanda Maria Oliveira, Silva, Maria das Graças Conceição Parada Costa, Gaiotto, Fernanda Amato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319139/
https://www.ncbi.nlm.nih.gov/pubmed/32607211
http://dx.doi.org/10.1002/ece3.6348
Descripción
Sumario:Euterpe edulis (Arecaceae) Mart has high ecological and economic importance providing food resources for more than 58 species of birds and 20 species of mammals, including humans. E. edulis is the second most exploited nontimber product from Brazilian Atlantic Forest. Due to overexploitation and destruction of habitats, E. edulis is threatened by extinction. Euterpe edulis populations have large morphological variations, with individuals having green, red, or yellow leaf sheath. However, no study has related phenotypic distinctions between populations and their levels of genetic structure. Thus, this study aimed to evaluate the diversity and genetic structure of different E. edulis morphotypes. We sampled 250 adult individuals in eight populations with the different morphotypes. Using 14 microsatellite markers, we access genetic diversity through population genetic parameters calculated in the GenAlex program and the diveRsity package in R. We used the Wilcoxon test to verify population bottlenecks and the genetic distance of Nei and Bayesian analysis for genetic clusters. The eight populations showed low allele richness, low observed heterozygosity, and high inbreeding values (f). In addition, six of the eight populations experienced genetic bottlenecks, which would partly explain the low genetic diversity in populations. Cluster analysis identified two clusters (K = 2), with green morphotype genetically distinguishing from yellow and red morphotypes. Thus, we show, for the first time, a strong genetic structure among E. edulis morphotypes even for geographically close populations.