Cargando…

Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States

Detection of SARS-CoV-2 infections to date has relied heavily on RT-PCR testing. However, limited test availability, high false-negative rates, and the existence of asymptomatic or sub-clinical infections have resulted in an under-counting of the true prevalence of SARS-CoV-2. Here, we show how infl...

Descripción completa

Detalles Bibliográficos
Autores principales: Silverman, Justin D., Hupert, Nathaniel, Washburne, Alex D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319260/
https://www.ncbi.nlm.nih.gov/pubmed/32571980
http://dx.doi.org/10.1126/scitranslmed.abc1126
Descripción
Sumario:Detection of SARS-CoV-2 infections to date has relied heavily on RT-PCR testing. However, limited test availability, high false-negative rates, and the existence of asymptomatic or sub-clinical infections have resulted in an under-counting of the true prevalence of SARS-CoV-2. Here, we show how influenza-like illness (ILI) outpatient surveillance data can be used to estimate the prevalence of SARS-CoV-2. We found a surge of non-influenza ILI above the seasonal average in March 2020 and showed that this surge correlated with COVID-19 case counts across states. If 1/3 of patients infected with SARS-CoV-2 in the US sought care, this ILI surge would have corresponded to more than 8.7 million new SARS-CoV-2 infections across the US during the three-week period from March 8 to March 28, 2020. Combining excess ILI counts with the date of onset of community transmission in the US, we also show that the early epidemic in the US was unlikely to have been doubling slower than every 4 days. Together these results suggest a conceptual model for the COVID-19 epidemic in the US characterized by rapid spread across the US with over 80% infected patients remaining undetected. We emphasize the importance of testing these findings with seroprevalence data and discuss the broader potential to use syndromic surveillance for early detection and understanding of emerging infectious diseases.