Cargando…
Gradient Methods on Strongly Convex Feasible Sets and Optimal Control of Affine Systems
The paper presents new results about convergence of the gradient projection and the conditional gradient methods for abstract minimization problems on strongly convex sets. In particular, linear convergence is proved, although the objective functional does not need to be convex. Such problems arise,...
Autores principales: | Veliov, V. M., Vuong, P. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319312/ https://www.ncbi.nlm.nih.gov/pubmed/32624632 http://dx.doi.org/10.1007/s00245-018-9528-3 |
Ejemplares similares
-
On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions
por: Preininger, J., et al.
Publicado: (2018) -
On the Strong Subregularity of the Optimality Mapping in an Optimal Control Problem with Pointwise Inequality Control Constraints
por: Osmolovskii, N. P., et al.
Publicado: (2023) -
Suplattices associated with convex sets, convex cones and affine spaces
por: Nachbin, L
Publicado: (1993) -
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions
por: Spiridonoff, Artin, et al.
Publicado: (2020) -
Strongly Convex Divergences
por: Melbourne, James
Publicado: (2020)