Cargando…
Participation of TDP1 in the repair of formaldehyde-induced DNA-protein cross-links in chicken DT40 cells
Proteins are covalently trapped on DNA to form DNA-protein cross-links (DPCs) when cells are exposed to DNA-damaging agents. Aldehyde compounds produce common types of DPCs that contain proteins in an undisrupted DNA strand. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs topoisomerase 1 (TOPO1) that...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319324/ https://www.ncbi.nlm.nih.gov/pubmed/32589683 http://dx.doi.org/10.1371/journal.pone.0234859 |
Sumario: | Proteins are covalently trapped on DNA to form DNA-protein cross-links (DPCs) when cells are exposed to DNA-damaging agents. Aldehyde compounds produce common types of DPCs that contain proteins in an undisrupted DNA strand. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs topoisomerase 1 (TOPO1) that is trapped at the 3’-end of DNA. In the present study, we examined the contribution of TDP1 to the repair of formaldehyde-induced DPCs using a reverse genetic strategy with chicken DT40 cells. The results obtained showed that cells deficient in TDP1 were sensitive to formaldehyde. The removal of formaldehyde-induced DPCs was slower in tdp1-deficient cells than in wild type cells. We also found that formaldehyde did not produce trapped TOPO1, indicating that trapped TOPO1 was not a primary cytotoxic DNA lesion that was generated by formaldehyde and repaired by TDP1. The formaldehyde treatment resulted in the accumulation of chromosomal breakages that were more prominent in tdp1-deficient cells than in wild type cells. Therefore, TDP1 plays a critical role in the repair of formaldehyde-induced DPCs that are distinct from trapped TOPO1. |
---|