Cargando…

Molecular atlas of the adult mouse brain

Brain maps are essential for integrating information and interpreting the structure-function relationship of circuits and behavior. We aimed to generate a systematic classification of the adult mouse brain based purely on the unbiased identification of spatially defining features by employing whole-...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortiz, Cantin, Navarro, Jose Fernandez, Jurek, Aleksandra, Märtin, Antje, Lundeberg, Joakim, Meletis, Konstantinos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319762/
https://www.ncbi.nlm.nih.gov/pubmed/32637622
http://dx.doi.org/10.1126/sciadv.abb3446
Descripción
Sumario:Brain maps are essential for integrating information and interpreting the structure-function relationship of circuits and behavior. We aimed to generate a systematic classification of the adult mouse brain based purely on the unbiased identification of spatially defining features by employing whole-brain spatial transcriptomics. We found that the molecular information was sufficient to deduce the complex and detailed neuroanatomical organization of the brain. The unsupervised (non-expert, data-driven) classification revealed new area- and layer-specific subregions, for example in isocortex and hippocampus, and new subdivisions of striatum. The molecular atlas further supports the characterization of the spatial identity of neurons from their single-cell RNA profile, and provides a resource for annotating the brain using a minimal gene set—a brain palette. In summary, we have established a molecular atlas to formally define the spatial organization of brain regions, including the molecular code for mapping and targeting of discrete neuroanatomical domains.