Cargando…
Representation of molecular structures with persistent homology for machine learning applications in chemistry
Machine learning and high-throughput computational screening have been valuable tools in accelerated first-principles screening for the discovery of the next generation of functionalized molecules and materials. The application of machine learning for chemical applications requires the conversion of...
Autores principales: | Townsend, Jacob, Micucci, Cassie Putman, Hymel, John H., Maroulas, Vasileios, Vogiatzis, Konstantinos D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319956/ https://www.ncbi.nlm.nih.gov/pubmed/32591514 http://dx.doi.org/10.1038/s41467-020-17035-5 |
Ejemplares similares
-
Author Correction: Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Townsend, Jacob, et al.
Publicado: (2020) -
Tree representations of brain structural connectivity via persistent homology
por: Li, Didong, et al.
Publicado: (2023) -
Weighted-persistent-homology-based machine learning for RNA flexibility analysis
por: Pun, Chi Seng, et al.
Publicado: (2020) -
Machine learning techniques on homological persistence features for prostate cancer diagnosis
por: Rammal, Abbas, et al.
Publicado: (2022) -
Persistent Dirac for molecular representation
por: Wee, Junjie, et al.
Publicado: (2023)