Cargando…
Machine learning analysis identifies genes differentiating triple negative breast cancers
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer (BC) with the highest mortality due to high rate of relapse, resistance, and lack of an effective treatment. Various molecular approaches have been used to target TNBC but with little success. Here, using machin...
Autores principales: | Kothari, Charu, Osseni, Mazid Abiodoun, Agbo, Lynda, Ouellette, Geneviève, Déraspe, Maxime, Laviolette, François, Corbeil, Jacques, Lambert, Jean-Philippe, Diorio, Caroline, Durocher, Francine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320018/ https://www.ncbi.nlm.nih.gov/pubmed/32591639 http://dx.doi.org/10.1038/s41598-020-67525-1 |
Ejemplares similares
-
On the robustness of generalization of drug–drug interaction models
por: Kpanou, Rogia, et al.
Publicado: (2021) -
Identification of a gene signature for different stages of breast cancer development that could be used for early diagnosis and specific therapy
por: Kothari, Charu, et al.
Publicado: (2018) -
Are Machine Learning Algorithms More Accurate in Predicting Vegetable and Fruit Consumption Than Traditional Statistical Models? An Exploratory Analysis
por: Côté, Mélina, et al.
Publicado: (2022) -
Flexible protein database based on amino acid k-mers
por: Déraspe, Maxime, et al.
Publicado: (2022) -
The Importance of Breast Adipose Tissue in Breast Cancer
por: Kothari, Charu, et al.
Publicado: (2020)