Cargando…
Comparing methods of category learning: Classification versus feature inference
Categories have at least two main functions: classification of instances and feature inference. Classification involves assigning an instance to a category, and feature inference involves predicting a feature for a category instance. Correspondingly, categories can be learned in two distinct ways, b...
Autores principales: | Morgan, Emma L., Johansen, Mark K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320051/ https://www.ncbi.nlm.nih.gov/pubmed/32078736 http://dx.doi.org/10.3758/s13421-020-01022-8 |
Ejemplares similares
-
Premise typicality as feature inference decision-making in perceptual categories
por: Morgan, Emma L., et al.
Publicado: (2021) -
Deep Transfer Learning for Question Classification Based on Semantic Information Features of Category Labels
por: Su, Lei, et al.
Publicado: (2022) -
Varying variation: the effects of within- versus across-feature differences on relational category learning
por: Livins, Katherine A., et al.
Publicado: (2015) -
Impact of feature saliency on visual category learning
por: Hammer, Rubi
Publicado: (2015) -
Which Matters More in Incidental Category Learning: Edge-Based Versus Surface-Based Features
por: Zhou, Xiaoyan, et al.
Publicado: (2019)