Cargando…

Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression

Testicular torsion/detorsion-induced damage is considered as a typical ischemia-reperfusion injury attributed to excessive reactive oxygen species (ROS) production. ROS may regulate many genes whose expression affects cell-cycle regulation, cell proliferation, and apoptosis. The cAMP-responsive elem...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Si-Ming, Wang, Rong-Yun, Chen, Yan-Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320277/
https://www.ncbi.nlm.nih.gov/pubmed/32655774
http://dx.doi.org/10.1155/2020/9043806
_version_ 1783551207734771712
author Wei, Si-Ming
Wang, Rong-Yun
Chen, Yan-Song
author_facet Wei, Si-Ming
Wang, Rong-Yun
Chen, Yan-Song
author_sort Wei, Si-Ming
collection PubMed
description Testicular torsion/detorsion-induced damage is considered as a typical ischemia-reperfusion injury attributed to excessive reactive oxygen species (ROS) production. ROS may regulate many genes whose expression affects cell-cycle regulation, cell proliferation, and apoptosis. The cAMP-responsive element modulator-τ (CREMτ) gene expression in the testis is essential for normal germ cell differentiation. The present study was aimed at investigating the effect of sesamol, a powerful antioxidant, on testicular ischemia-reperfusion injury and related mechanisms in an experimental testicular torsion-detorsion rat model. The type of our study was a randomized controlled trial. Sixty rats were randomly divided into the following 3 groups: (1) sham-operated control group (n = 20), (2) testicular ischemia-reperfusion group (n = 20), and (3) testicular ischemia-reperfusion+sesamol-treated group (n = 20). Testicular ischemia-reperfusion was induced by left testicular torsion (720° rotation in a counterclockwise direction) for 2 hours, followed by detorsion. Orchiectomy was performed at 4 hours or 3 months after detorsion. The testis was obtained for the analysis of the following parameters, including malondialdehyde level (a sensitive indicator of ROS), CREMτ expression, and spermatogenesis. In the testicular ischemia-reperfusion group, the malondialdehyde level was significantly increased with a concomitant significant decrease in CREMτ expression and spermatogenesis in ipsilateral testis. These results suggest that overproduction of ROS after testicular ischemia-reperfusion may downregulate CREMτ expression, which causes spermatogenic injury. Sesamol treatment resulted in a significant reduction in the malondialdehyde level and significant increase in CREMτ expression and spermatogenesis in ipsilateral testis. These data support the above suggestion. Our study shows that sesamol can attenuate testicular ischemia-reperfusion injury through scavenging ROS and upregulating CREMτ expression.
format Online
Article
Text
id pubmed-7320277
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-73202772020-07-11 Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression Wei, Si-Ming Wang, Rong-Yun Chen, Yan-Song Oxid Med Cell Longev Research Article Testicular torsion/detorsion-induced damage is considered as a typical ischemia-reperfusion injury attributed to excessive reactive oxygen species (ROS) production. ROS may regulate many genes whose expression affects cell-cycle regulation, cell proliferation, and apoptosis. The cAMP-responsive element modulator-τ (CREMτ) gene expression in the testis is essential for normal germ cell differentiation. The present study was aimed at investigating the effect of sesamol, a powerful antioxidant, on testicular ischemia-reperfusion injury and related mechanisms in an experimental testicular torsion-detorsion rat model. The type of our study was a randomized controlled trial. Sixty rats were randomly divided into the following 3 groups: (1) sham-operated control group (n = 20), (2) testicular ischemia-reperfusion group (n = 20), and (3) testicular ischemia-reperfusion+sesamol-treated group (n = 20). Testicular ischemia-reperfusion was induced by left testicular torsion (720° rotation in a counterclockwise direction) for 2 hours, followed by detorsion. Orchiectomy was performed at 4 hours or 3 months after detorsion. The testis was obtained for the analysis of the following parameters, including malondialdehyde level (a sensitive indicator of ROS), CREMτ expression, and spermatogenesis. In the testicular ischemia-reperfusion group, the malondialdehyde level was significantly increased with a concomitant significant decrease in CREMτ expression and spermatogenesis in ipsilateral testis. These results suggest that overproduction of ROS after testicular ischemia-reperfusion may downregulate CREMτ expression, which causes spermatogenic injury. Sesamol treatment resulted in a significant reduction in the malondialdehyde level and significant increase in CREMτ expression and spermatogenesis in ipsilateral testis. These data support the above suggestion. Our study shows that sesamol can attenuate testicular ischemia-reperfusion injury through scavenging ROS and upregulating CREMτ expression. Hindawi 2020-06-17 /pmc/articles/PMC7320277/ /pubmed/32655774 http://dx.doi.org/10.1155/2020/9043806 Text en Copyright © 2020 Si-Ming Wei et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wei, Si-Ming
Wang, Rong-Yun
Chen, Yan-Song
Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression
title Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression
title_full Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression
title_fullStr Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression
title_full_unstemmed Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression
title_short Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression
title_sort sesamol protects testis from ischemia-reperfusion injury through scavenging reactive oxygen species and upregulating cremτ expression
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320277/
https://www.ncbi.nlm.nih.gov/pubmed/32655774
http://dx.doi.org/10.1155/2020/9043806
work_keys_str_mv AT weisiming sesamolprotectstestisfromischemiareperfusioninjurythroughscavengingreactiveoxygenspeciesandupregulatingcremtexpression
AT wangrongyun sesamolprotectstestisfromischemiareperfusioninjurythroughscavengingreactiveoxygenspeciesandupregulatingcremtexpression
AT chenyansong sesamolprotectstestisfromischemiareperfusioninjurythroughscavengingreactiveoxygenspeciesandupregulatingcremtexpression