Cargando…
Attention Optimization Method for EEG via the TGAM
Since the 21st century, noninvasive brain-computer interface (BCI) has developed rapidly, and brain-computer devices have gradually moved from the laboratory to the mass market. Among them, the TGAM (ThinkGear Asic Module) and its encapsulate algorithm have been adopted by many research teams and fa...
Autores principales: | Wu, Yu, Xie, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320284/ https://www.ncbi.nlm.nih.gov/pubmed/32655682 http://dx.doi.org/10.1155/2020/6427305 |
Ejemplares similares
-
Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors
por: Liu, Ning-Han, et al.
Publicado: (2013) -
Deep-EEG: An Optimized and Robust Framework and Method for EEG-Based Diagnosis of Epileptic Seizure
por: Mir, Waseem Ahmad, et al.
Publicado: (2023) -
Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism
por: Zhao, Yifeng, et al.
Publicado: (2021) -
The EEG-Based Attention Analysis in Multimedia m-Learning
por: Ni, Dan, et al.
Publicado: (2020) -
Lateralized power spectra of the EEG as an index of visuospatial
attention
por: Van der Lubbe, Rob H. J., et al.
Publicado: (2013)