Cargando…
A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels
In this paper, we considered a new mathematical model depicting the possibility of spread within a given general population. The model is constructed with five classes including susceptible, exposed, infected, recovered and deaths. We presented a detailed analysis of the suggested model including, t...
Autor principal: | Zhang, Zizhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321058/ https://www.ncbi.nlm.nih.gov/pubmed/32834613 http://dx.doi.org/10.1016/j.chaos.2020.110060 |
Ejemplares similares
-
Corrigendum to a novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels [Chaos Solitons & Fractals 139 (2020) 110060]
por: Zhang, Zizhen
Publicado: (2020) -
A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel
por: Okposo, Newton I., et al.
Publicado: (2021) -
A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel
por: Boudaoui, Ahmed, et al.
Publicado: (2021) -
Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel
por: Zafar, Zain Ul Abadin, et al.
Publicado: (2021) -
Investigation of a time-fractional COVID-19 mathematical model with singular kernel
por: Adnan, et al.
Publicado: (2022)