Cargando…
The Role of Structural Representation in the Performance of a Deep Neural Network for X-ray Spectroscopy
An important consideration when developing a deep neural network (DNN) for the prediction of molecular properties is the representation of the chemical space. Herein we explore the effect of the representation on the performance of our DNN engineered to predict Fe K-edge X-ray absorption near-edge s...
Autores principales: | Madkhali, Marwah M.M., Rankine, Conor D., Penfold, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321082/ https://www.ncbi.nlm.nih.gov/pubmed/32545393 http://dx.doi.org/10.3390/molecules25112715 |
Ejemplares similares
-
Prediction of Pulmonary Fibrosis Based on X-Rays by Deep Neural Network
por: Li, Da, et al.
Publicado: (2022) -
Performance Evaluation of the Deep Learning Based Convolutional Neural Network Approach for the Recognition of Chest X-Ray Images
por: Sharma, Sandhya, et al.
Publicado: (2022) -
COVID-19 classification of X-ray images using deep neural networks
por: Keidar, Daphna, et al.
Publicado: (2021) -
Representational Distance Learning for Deep Neural Networks
por: McClure, Patrick, et al.
Publicado: (2016) -
Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models
por: Konstantinova, Tatiana, et al.
Publicado: (2021)