Cargando…
A Deep-Learning Approach toward Rational Molecular Docking Protocol Selection
While a plethora of different protein–ligand docking protocols have been developed over the past twenty years, their performances greatly depend on the provided input protein–ligand pair. In this study, we developed a machine-learning model that uses a combination of convolutional and fully connecte...
Autores principales: | Jiménez-Luna, José, Cuzzolin, Alberto, Bolcato, Giovanni, Sturlese, Mattia, Moro, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321124/ https://www.ncbi.nlm.nih.gov/pubmed/32471211 http://dx.doi.org/10.3390/molecules25112487 |
Ejemplares similares
-
Can We Still Trust Docking Results? An Extension of the Applicability of DockBench on PDBbind Database
por: Bolcato, Giovanni, et al.
Publicado: (2019) -
DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations
por: Cuzzolin, Alberto, et al.
Publicado: (2015) -
Re-Exploring the Ability of Common Docking Programs to Correctly Reproduce the Binding Modes of Non-Covalent Inhibitors of SARS-CoV-2 Protease M(pro)
por: Bassani, Davide, et al.
Publicado: (2022) -
New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations
por: Bolcato, Giovanni, et al.
Publicado: (2020) -
Shedding Light on the Molecular Recognition of Sub-Kilodalton Macrocyclic Peptides on Thrombin by Supervised Molecular Dynamics
por: Hassankalhori, Mahdi, et al.
Publicado: (2021)