Cargando…
Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load
A notch-induced high-speed splitting method was developed for high-quality cropping of metal bars using a new type of electric-pneumatic counter hammer. Theoretical equations and FE models were established to reveal the crack initiation and fracture mode. Comparative tests were conducted for notched...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321237/ https://www.ncbi.nlm.nih.gov/pubmed/32481693 http://dx.doi.org/10.3390/ma13112461 |
_version_ | 1783551422483136512 |
---|---|
author | Dong, Yuanzhe Ren, Yujian Fan, Shuqin Wang, Yongfei Zhao, Shengdun |
author_facet | Dong, Yuanzhe Ren, Yujian Fan, Shuqin Wang, Yongfei Zhao, Shengdun |
author_sort | Dong, Yuanzhe |
collection | PubMed |
description | A notch-induced high-speed splitting method was developed for high-quality cropping of metal bars using a new type of electric-pneumatic counter hammer. Theoretical equations and FE models were established to reveal the crack initiation and fracture mode. Comparative tests were conducted for notched and unnotched bars of four types of steels, i.e., AISI 1020, 1045, 52100, and 304, and the section quality and microfracture mechanism were further investigated. The results show that damage initiates at the bilateral notch tips with peak equivalent plastic strain, and propagates through the plane induced by the notch tip; the stress triaxiality varies as a quasi-sine curve, revealing that the material is subjected to pure shearing at the notch tip, and under compression at the adjacent region. High precision chamfered billets were obtained with roundness errors of 1.1–2.8%, bending deflections of 0.5–1.5mm, and angles of inclination of 0.7°–3.4°. Additionally, the notch effectively reduced the maximum impact force by 21.6–23.9%, splitting displacement by 7.6–18.6%, and impact energy by 27.8–39.1%. The crack initiation zone displayed quasi-parabolic shallow dimples due to shear stress, and the pinning effect was larger in AISI 52100 and 1045 steel; the final rupture zone was characterized by less elongated and quasi-equiaxial deeper dimples due to the combination of shear and normal stress. |
format | Online Article Text |
id | pubmed-7321237 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73212372020-07-06 Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load Dong, Yuanzhe Ren, Yujian Fan, Shuqin Wang, Yongfei Zhao, Shengdun Materials (Basel) Article A notch-induced high-speed splitting method was developed for high-quality cropping of metal bars using a new type of electric-pneumatic counter hammer. Theoretical equations and FE models were established to reveal the crack initiation and fracture mode. Comparative tests were conducted for notched and unnotched bars of four types of steels, i.e., AISI 1020, 1045, 52100, and 304, and the section quality and microfracture mechanism were further investigated. The results show that damage initiates at the bilateral notch tips with peak equivalent plastic strain, and propagates through the plane induced by the notch tip; the stress triaxiality varies as a quasi-sine curve, revealing that the material is subjected to pure shearing at the notch tip, and under compression at the adjacent region. High precision chamfered billets were obtained with roundness errors of 1.1–2.8%, bending deflections of 0.5–1.5mm, and angles of inclination of 0.7°–3.4°. Additionally, the notch effectively reduced the maximum impact force by 21.6–23.9%, splitting displacement by 7.6–18.6%, and impact energy by 27.8–39.1%. The crack initiation zone displayed quasi-parabolic shallow dimples due to shear stress, and the pinning effect was larger in AISI 52100 and 1045 steel; the final rupture zone was characterized by less elongated and quasi-equiaxial deeper dimples due to the combination of shear and normal stress. MDPI 2020-05-28 /pmc/articles/PMC7321237/ /pubmed/32481693 http://dx.doi.org/10.3390/ma13112461 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dong, Yuanzhe Ren, Yujian Fan, Shuqin Wang, Yongfei Zhao, Shengdun Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load |
title | Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load |
title_full | Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load |
title_fullStr | Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load |
title_full_unstemmed | Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load |
title_short | Investigation of Notch-Induced Precise Splitting of Different Bar Materials under High-Speed Load |
title_sort | investigation of notch-induced precise splitting of different bar materials under high-speed load |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321237/ https://www.ncbi.nlm.nih.gov/pubmed/32481693 http://dx.doi.org/10.3390/ma13112461 |
work_keys_str_mv | AT dongyuanzhe investigationofnotchinducedprecisesplittingofdifferentbarmaterialsunderhighspeedload AT renyujian investigationofnotchinducedprecisesplittingofdifferentbarmaterialsunderhighspeedload AT fanshuqin investigationofnotchinducedprecisesplittingofdifferentbarmaterialsunderhighspeedload AT wangyongfei investigationofnotchinducedprecisesplittingofdifferentbarmaterialsunderhighspeedload AT zhaoshengdun investigationofnotchinducedprecisesplittingofdifferentbarmaterialsunderhighspeedload |