Cargando…
Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars
Just as it is regarding ordinary cement-based materials, the pore structure and microstructure of alkali-activated materials are disordered. It is essential to predict the macroscopic properties by studying the pore and microstructure fractal characteristics of materials. In this paper, the effects...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321362/ https://www.ncbi.nlm.nih.gov/pubmed/32471072 http://dx.doi.org/10.3390/ma13112442 |
_version_ | 1783551447785275392 |
---|---|
author | Ma, Hongqiang Sun, Jianwei Wu, Chao Yi, Cheng Li, Yu |
author_facet | Ma, Hongqiang Sun, Jianwei Wu, Chao Yi, Cheng Li, Yu |
author_sort | Ma, Hongqiang |
collection | PubMed |
description | Just as it is regarding ordinary cement-based materials, the pore structure and microstructure of alkali-activated materials are disordered. It is essential to predict the macroscopic properties by studying the pore and microstructure fractal characteristics of materials. In this paper, the effects of slag content and alkali activator modulus on compressive strength, porosity, and microstructure of alkali-activated coal gangue-slag (AACGS) mortar were studied. Further, with the help of mercury intrusion porosimetry (MIP) data and the MATLAB programming, the pore and SEM photos fractal dimensions of AACGS mortar specimens were obtained, respectively, and the relationship between the microscopic fractal dimensions and the macroscopic strength and the structural characteristics of pores was established. The results show that the pore fractal dimension has a good linear relationship with the compressive strength and pore characteristic parameters (porosity, total pore area, and average pore diameter, etc.). With the increase of slag content, the SEM photos fractal dimension of AACGS mortar specimens increases, and the fractal dimension and compressive strength also show a significant positive linear relationship. The two fractal characterization methods can be used in the alkali-activated material system and have important guiding significance for predicting the macroscopic strength and pore characteristic parameters of the material. |
format | Online Article Text |
id | pubmed-7321362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73213622020-06-29 Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars Ma, Hongqiang Sun, Jianwei Wu, Chao Yi, Cheng Li, Yu Materials (Basel) Article Just as it is regarding ordinary cement-based materials, the pore structure and microstructure of alkali-activated materials are disordered. It is essential to predict the macroscopic properties by studying the pore and microstructure fractal characteristics of materials. In this paper, the effects of slag content and alkali activator modulus on compressive strength, porosity, and microstructure of alkali-activated coal gangue-slag (AACGS) mortar were studied. Further, with the help of mercury intrusion porosimetry (MIP) data and the MATLAB programming, the pore and SEM photos fractal dimensions of AACGS mortar specimens were obtained, respectively, and the relationship between the microscopic fractal dimensions and the macroscopic strength and the structural characteristics of pores was established. The results show that the pore fractal dimension has a good linear relationship with the compressive strength and pore characteristic parameters (porosity, total pore area, and average pore diameter, etc.). With the increase of slag content, the SEM photos fractal dimension of AACGS mortar specimens increases, and the fractal dimension and compressive strength also show a significant positive linear relationship. The two fractal characterization methods can be used in the alkali-activated material system and have important guiding significance for predicting the macroscopic strength and pore characteristic parameters of the material. MDPI 2020-05-27 /pmc/articles/PMC7321362/ /pubmed/32471072 http://dx.doi.org/10.3390/ma13112442 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Hongqiang Sun, Jianwei Wu, Chao Yi, Cheng Li, Yu Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars |
title | Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars |
title_full | Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars |
title_fullStr | Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars |
title_full_unstemmed | Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars |
title_short | Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars |
title_sort | study on the pore and microstructure fractal characteristics of alkali-activated coal gangue-slag mortars |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321362/ https://www.ncbi.nlm.nih.gov/pubmed/32471072 http://dx.doi.org/10.3390/ma13112442 |
work_keys_str_mv | AT mahongqiang studyontheporeandmicrostructurefractalcharacteristicsofalkaliactivatedcoalgangueslagmortars AT sunjianwei studyontheporeandmicrostructurefractalcharacteristicsofalkaliactivatedcoalgangueslagmortars AT wuchao studyontheporeandmicrostructurefractalcharacteristicsofalkaliactivatedcoalgangueslagmortars AT yicheng studyontheporeandmicrostructurefractalcharacteristicsofalkaliactivatedcoalgangueslagmortars AT liyu studyontheporeandmicrostructurefractalcharacteristicsofalkaliactivatedcoalgangueslagmortars |