Cargando…

Selected Electrochemical Properties of 4,4’-((1E,1’E)-((1,2,4-Thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards Perovskite Solar Cells with 14.4% Efficiency

Planar perovskite solar cells were fabricated on F-doped SnO(2) (FTO) coated glass substrates, with 4,4’-((1E,1’E)-((1,2,4-thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylaniline) (bTAThDaz) as hole transport material. This imine was synthesized in one step reaction,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bogdanowicz, Krzysztof Artur, Jewłoszewicz, Beata, Iwan, Agnieszka, Dysz, Karolina, Przybyl, Wojciech, Januszko, Adam, Marzec, Monika, Cichy, Kacper, Świerczek, Konrad, Kavan, Ladislav, Zukalová, Markéta, Nadazdy, Vojtech, Subair, Riyas, Majkova, Eva, Micusik, Matej, Omastova, Maria, Özeren, Mehmet Derya, Kamarás, Katalin, Heo, Do Yeon, Kim, Soo Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321367/
https://www.ncbi.nlm.nih.gov/pubmed/32471055
http://dx.doi.org/10.3390/ma13112440
Descripción
Sumario:Planar perovskite solar cells were fabricated on F-doped SnO(2) (FTO) coated glass substrates, with 4,4’-((1E,1’E)-((1,2,4-thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylaniline) (bTAThDaz) as hole transport material. This imine was synthesized in one step reaction, starting from commercially available and relatively inexpensive reagents. Electrochemical, optical, electrical, thermal and structural studies including thermal images and current-voltage measurements of the full solar cell devices characterize the imine in details. HOMO-LUMO of bTAThDaz were investigated by cyclic voltammetry (CV) and energy-resolved electrochemical impedance spectroscopy (ER-EIS) and were found at −5.19 eV and −2.52 eV (CV) and at −5.5 eV and −2.3 eV (ER-EIS). The imine exhibited 5% weight loss at 156 °C. The electrical behavior and photovoltaic performance of the perovskite solar cell was examined for FTO/TiO(2)/perovskite/bTAThDaz/Ag device architecture. Constructed devices exhibited good time and air stability together with quite small effect of hysteresis. The observed solar conversion efficiency was 14.4%.