Cargando…
Dynamic Ferromagnetic Hysteresis Modelling Using a Preisach-Recurrent Neural Network Model
In this work, a Preisach-recurrent neural network model is proposed to predict the dynamic hysteresis in ARMCO pure iron, an important soft magnetic material in particle accelerator magnets. A recurrent neural network coupled with Preisach play operators is proposed, along with a novel validation me...
Autores principales: | Grech, Christian, Buzio, Marco, Pentella, Mariano, Sammut, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321460/ https://www.ncbi.nlm.nih.gov/pubmed/32512774 http://dx.doi.org/10.3390/ma13112561 |
Ejemplares similares
-
Dynamic Ferromagnetic Hysteresis Modelling Using a Preisach-Recurrent Neural Network Model
por: Grech, Christian, et al.
Publicado: (2020) -
Review of Play and Preisach Models for Hysteresis in Magnetic Materials
por: Mörée, Gustav, et al.
Publicado: (2023) -
Harmonic and DC Bias Hysteresis Characteristics Simulation Based on an Improved Preisach Model
por: Zhang, Changgeng, et al.
Publicado: (2023) -
Dynamic Simulation of a Fe-Ga Energy Harvester Prototype Through a Preisach-Type Hysteresis Model
por: Palumbo, Stefano, et al.
Publicado: (2019) -
A Magnetic Measurement Model for Real-Time Control of Synchrotrons
por: Grech, Christian, et al.
Publicado: (2019)