Cargando…
Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
High-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the fle...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321581/ https://www.ncbi.nlm.nih.gov/pubmed/32516984 http://dx.doi.org/10.3390/ma13112580 |
_version_ | 1783551501089636352 |
---|---|
author | Zidan, Saleh Silikas, Nikolaos Haider, Julfikar Alhotan, Abdulaziz Jahantigh, Javad Yates, Julian |
author_facet | Zidan, Saleh Silikas, Nikolaos Haider, Julfikar Alhotan, Abdulaziz Jahantigh, Javad Yates, Julian |
author_sort | Zidan, Saleh |
collection | PubMed |
description | High-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the flexural strength of complete removable dentures made of HI heat-polymerised PMMA resin reinforced with zirconia nanoparticles at two different concentrations. The effect of fatigue loading on the flexural strength behaviour of the dentures was also investigated. A total of 30 denture specimens were fabricated from PMMA with different concentrations of zirconia nanoparticles: 0 (control), 3, and 5 wt.%. Ten specimens in each group were divided into two subgroups, with five specimens in each, to conduct both flexural strength and fatigue loading test of each of the subgroups. Fatigue loading was applied on the dentures using a mastication simulator and equivalent flexural strength was calculated with data from bending tests with and without fatigue cyclic loading. One-way analysis of variance (ANOVA) of the test data was conducted with the Bonferroni significant difference post-hoc test at a preset alpha value of 0.05. Paired t-test was employed to identify any difference between the specimens with and without the application of fatigue loading. The fractured surface of the denture specimens was examined with a scanning electron microscope (SEM). The bending tests demonstrated that the mean equivalent flexural strength of reinforced HI PMMA denture specimens with 5 wt.% zirconia nanoparticles increased significantly (134.9 ± 13.9 MPa) compared to the control group (0 wt.%) (106.3 ± 21.3 MPa) without any fatigue loading. The mean strength of the dentures with PMMA +3 wt.% zirconia also increased, but not significantly. Although the mean strength of all specimen groups subjected to fatigue loading slightly decreased compared to that of the specimen groups without any fatigue cyclic loading, this was not statistically significant. Denture specimens made of HI heat-polymerised PMMA reinforced with 5 wt.% zirconia nanoparticles had significantly improved equivalent flexural strength compared to that made of pure PMMA when the specimens were not subjected to any prior fatigue cyclic loading. In addition, the application of fatigue cyclic loading did not significantly improve the equivalent flexural strengths of all denture specimen groups. Within the limitations of this study, it can be concluded that the use of zirconia-impregnated PMMA in the manufacture of dentures does not result in any significant improvement for clinical application. |
format | Online Article Text |
id | pubmed-7321581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73215812020-06-29 Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites Zidan, Saleh Silikas, Nikolaos Haider, Julfikar Alhotan, Abdulaziz Jahantigh, Javad Yates, Julian Materials (Basel) Article High-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the flexural strength of complete removable dentures made of HI heat-polymerised PMMA resin reinforced with zirconia nanoparticles at two different concentrations. The effect of fatigue loading on the flexural strength behaviour of the dentures was also investigated. A total of 30 denture specimens were fabricated from PMMA with different concentrations of zirconia nanoparticles: 0 (control), 3, and 5 wt.%. Ten specimens in each group were divided into two subgroups, with five specimens in each, to conduct both flexural strength and fatigue loading test of each of the subgroups. Fatigue loading was applied on the dentures using a mastication simulator and equivalent flexural strength was calculated with data from bending tests with and without fatigue cyclic loading. One-way analysis of variance (ANOVA) of the test data was conducted with the Bonferroni significant difference post-hoc test at a preset alpha value of 0.05. Paired t-test was employed to identify any difference between the specimens with and without the application of fatigue loading. The fractured surface of the denture specimens was examined with a scanning electron microscope (SEM). The bending tests demonstrated that the mean equivalent flexural strength of reinforced HI PMMA denture specimens with 5 wt.% zirconia nanoparticles increased significantly (134.9 ± 13.9 MPa) compared to the control group (0 wt.%) (106.3 ± 21.3 MPa) without any fatigue loading. The mean strength of the dentures with PMMA +3 wt.% zirconia also increased, but not significantly. Although the mean strength of all specimen groups subjected to fatigue loading slightly decreased compared to that of the specimen groups without any fatigue cyclic loading, this was not statistically significant. Denture specimens made of HI heat-polymerised PMMA reinforced with 5 wt.% zirconia nanoparticles had significantly improved equivalent flexural strength compared to that made of pure PMMA when the specimens were not subjected to any prior fatigue cyclic loading. In addition, the application of fatigue cyclic loading did not significantly improve the equivalent flexural strengths of all denture specimen groups. Within the limitations of this study, it can be concluded that the use of zirconia-impregnated PMMA in the manufacture of dentures does not result in any significant improvement for clinical application. MDPI 2020-06-05 /pmc/articles/PMC7321581/ /pubmed/32516984 http://dx.doi.org/10.3390/ma13112580 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zidan, Saleh Silikas, Nikolaos Haider, Julfikar Alhotan, Abdulaziz Jahantigh, Javad Yates, Julian Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites |
title | Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites |
title_full | Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites |
title_fullStr | Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites |
title_full_unstemmed | Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites |
title_short | Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites |
title_sort | evaluation of equivalent flexural strength for complete removable dentures made of zirconia-impregnated pmma nanocomposites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321581/ https://www.ncbi.nlm.nih.gov/pubmed/32516984 http://dx.doi.org/10.3390/ma13112580 |
work_keys_str_mv | AT zidansaleh evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites AT silikasnikolaos evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites AT haiderjulfikar evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites AT alhotanabdulaziz evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites AT jahantighjavad evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites AT yatesjulian evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites |