Cargando…
Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo
Conventional reconstruction algorithms (e.g., delay-and-sum) used in photoacoustic imaging (PAI) provide a fast solution while many artifacts remain, especially for limited-view with ill-posed problem. In this paper, we propose a new convolutional neural network (CNN) framework Y-Net: a CNN architec...
Autores principales: | Lan, Hengrong, Jiang, Daohuai, Yang, Changchun, Gao, Feng, Gao, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322183/ https://www.ncbi.nlm.nih.gov/pubmed/32612929 http://dx.doi.org/10.1016/j.pacs.2020.100197 |
Ejemplares similares
-
Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel
por: Lan, Hengrong, et al.
Publicado: (2021) -
Review of deep learning for photoacoustic imaging
por: Yang, Changchun, et al.
Publicado: (2020) -
A jointed feature fusion framework for photoacoustic image reconstruction()
por: Lan, Hengrong, et al.
Publicado: (2022) -
Photoacoustic digital brain and deep-learning-assisted image reconstruction
por: Zhang, Fan, et al.
Publicado: (2023) -
Comparing Deep Learning Frameworks for Photoacoustic Tomography Image Reconstruction
por: Hsu, Ko-Tsung, et al.
Publicado: (2021)