Cargando…
Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322399/ https://www.ncbi.nlm.nih.gov/pubmed/32305414 http://dx.doi.org/10.1016/j.bbabio.2020.148204 |
_version_ | 1783551633401053184 |
---|---|
author | Miller, Leanne C. Zhao, Longsheng Canniffe, Daniel P. Martin, David Liu, Lu-Ning |
author_facet | Miller, Leanne C. Zhao, Longsheng Canniffe, Daniel P. Martin, David Liu, Lu-Ning |
author_sort | Miller, Leanne C. |
collection | PubMed |
description | Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow. |
format | Online Article Text |
id | pubmed-7322399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-73223992020-08-01 Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center Miller, Leanne C. Zhao, Longsheng Canniffe, Daniel P. Martin, David Liu, Lu-Ning Biochim Biophys Acta Bioenerg Article Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow. Elsevier 2020-08-01 /pmc/articles/PMC7322399/ /pubmed/32305414 http://dx.doi.org/10.1016/j.bbabio.2020.148204 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Miller, Leanne C. Zhao, Longsheng Canniffe, Daniel P. Martin, David Liu, Lu-Ning Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
title | Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
title_full | Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
title_fullStr | Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
title_full_unstemmed | Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
title_short | Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
title_sort | unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322399/ https://www.ncbi.nlm.nih.gov/pubmed/32305414 http://dx.doi.org/10.1016/j.bbabio.2020.148204 |
work_keys_str_mv | AT millerleannec unfoldingpathwayandintermolecularinteractionsofthecytochromesubunitinthebacterialphotosyntheticreactioncenter AT zhaolongsheng unfoldingpathwayandintermolecularinteractionsofthecytochromesubunitinthebacterialphotosyntheticreactioncenter AT canniffedanielp unfoldingpathwayandintermolecularinteractionsofthecytochromesubunitinthebacterialphotosyntheticreactioncenter AT martindavid unfoldingpathwayandintermolecularinteractionsofthecytochromesubunitinthebacterialphotosyntheticreactioncenter AT liuluning unfoldingpathwayandintermolecularinteractionsofthecytochromesubunitinthebacterialphotosyntheticreactioncenter |