Cargando…

Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment

The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer...

Descripción completa

Detalles Bibliográficos
Autores principales: Drozdetski, Aleksander V., Mukhopadhyay, Abhishek, Onufriev, Alexey V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323118/
https://www.ncbi.nlm.nih.gov/pubmed/32601596
http://dx.doi.org/10.3389/fphy.2019.00195
_version_ 1783551750757679104
author Drozdetski, Aleksander V.
Mukhopadhyay, Abhishek
Onufriev, Alexey V.
author_facet Drozdetski, Aleksander V.
Mukhopadhyay, Abhishek
Onufriev, Alexey V.
author_sort Drozdetski, Aleksander V.
collection PubMed
description The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed.
format Online
Article
Text
id pubmed-7323118
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-73231182020-06-29 Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment Drozdetski, Aleksander V. Mukhopadhyay, Abhishek Onufriev, Alexey V. Front Phys Article The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed. 2019-11-29 2019-11 /pmc/articles/PMC7323118/ /pubmed/32601596 http://dx.doi.org/10.3389/fphy.2019.00195 Text en This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Article
Drozdetski, Aleksander V.
Mukhopadhyay, Abhishek
Onufriev, Alexey V.
Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment
title Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment
title_full Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment
title_fullStr Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment
title_full_unstemmed Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment
title_short Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment
title_sort strongly bent double-stranded dna: reconciling theory and experiment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323118/
https://www.ncbi.nlm.nih.gov/pubmed/32601596
http://dx.doi.org/10.3389/fphy.2019.00195
work_keys_str_mv AT drozdetskialeksanderv stronglybentdoublestrandeddnareconcilingtheoryandexperiment
AT mukhopadhyayabhishek stronglybentdoublestrandeddnareconcilingtheoryandexperiment
AT onufrievalexeyv stronglybentdoublestrandeddnareconcilingtheoryandexperiment