Cargando…

Make E Smart Again (Short Paper)

In this work in progress, we demonstrate a new use-case for the ENIGMA system. The ENIGMA system using the XGBoost implementation of gradient boosted decision trees has demonstrated high capability to learn to guide the E theorem prover’s inferences in real-time. Here, we strip E to the bare bones:...

Descripción completa

Detalles Bibliográficos
Autor principal: Goertzel, Zarathustra Amadeus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324009/
http://dx.doi.org/10.1007/978-3-030-51054-1_26
Descripción
Sumario:In this work in progress, we demonstrate a new use-case for the ENIGMA system. The ENIGMA system using the XGBoost implementation of gradient boosted decision trees has demonstrated high capability to learn to guide the E theorem prover’s inferences in real-time. Here, we strip E to the bare bones: we replace the KBO term ordering with an identity relation as the minimal possible ordering, disable literal selection, and replace evolved strategies with a simple combination of the clause weight and FIFO (first in first out) clause evaluation functions. We experimentally demonstrate that ENIGMA can learn to guide E as well as the smart, evolved strategies even without these standard automated theorem prover functionalities. To this end, we experiment with XGBoost’s meta-parameters over a dozen loops.