Cargando…

ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine (System Description)

We describe an implementation of gradient boosting and neural guidance of saturation-style automated theorem provers that does not depend on consistent symbol names across problems. For the gradient-boosting guidance, we manually create abstracted features by considering arity-based encodings of for...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakubův, Jan, Chvalovský, Karel, Olšák, Miroslav, Piotrowski, Bartosz, Suda, Martin, Urban, Josef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324011/
http://dx.doi.org/10.1007/978-3-030-51054-1_29
Descripción
Sumario:We describe an implementation of gradient boosting and neural guidance of saturation-style automated theorem provers that does not depend on consistent symbol names across problems. For the gradient-boosting guidance, we manually create abstracted features by considering arity-based encodings of formulas. For the neural guidance, we use symbol-independent graph neural networks (GNNs) and their embedding of the terms and clauses. The two methods are efficiently implemented in the E prover and its ENIGMA learning-guided framework. To provide competitive real-time performance of the GNNs, we have developed a new context-based approach to evaluation of generated clauses in E. Clauses are evaluated jointly in larger batches and with respect to a large number of already selected clauses (context) by the GNN that estimates their collectively most useful subset in several rounds of message passing. This means that approximative inference rounds done by the GNN are efficiently interleaved with precise symbolic inference rounds done inside E. The methods are evaluated on the MPTP large-theory benchmark and shown to achieve comparable real-time performance to state-of-the-art symbol-based methods. The methods also show high complementarity, solving a large number of hard Mizar problems.