Cargando…
Algebraically Closed Fields in Isabelle/HOL
A fundamental theorem states that every field admits an algebraically closed extension. Despite its central importance, this theorem has never before been formalised in a proof assistant. We fill this gap by documenting its formalisation in Isabelle/HOL, describing the difficulties that impeded this...
Autores principales: | de Vilhena, Paulo Emílio, Paulson, Lawrence C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324028/ http://dx.doi.org/10.1007/978-3-030-51054-1_12 |
Ejemplares similares
-
A Verified Implementation of Algebraic Numbers in Isabelle/HOL
por: Joosten, Sebastiaan J. C., et al.
Publicado: (2018) -
Reasoning About Algebraic Structures with Implicit Carriers in Isabelle/HOL
por: Guttmann, Walter
Publicado: (2020) -
Certified Quantum Computation in Isabelle/HOL
por: Bordg, Anthony, et al.
Publicado: (2020) -
Evaluating Winding Numbers and Counting Complex Roots Through Cauchy Indices in Isabelle/HOL
por: Li, Wenda, et al.
Publicado: (2019) -
Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL
por: Bottesch, Ralph, et al.
Publicado: (2020)