Cargando…

Quotients of Bounded Natural Functors

The functorial structure of type constructors is the foundation for many definition and proof principles in higher-order logic (HOL). For example, inductive and coinductive datatypes can be built modularly from bounded natural functors (BNFs), a class of well-behaved type constructors. Composition,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fürer, Basil, Lochbihler, Andreas, Schneider, Joshua, Traytel, Dmitriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324035/
http://dx.doi.org/10.1007/978-3-030-51054-1_4
Descripción
Sumario:The functorial structure of type constructors is the foundation for many definition and proof principles in higher-order logic (HOL). For example, inductive and coinductive datatypes can be built modularly from bounded natural functors (BNFs), a class of well-behaved type constructors. Composition, fixpoints, and—under certain conditions—subtypes are known to preserve the BNF structure. In this paper, we tackle the preservation question for quotients, the last important principle for introducing new types in HOL. We identify sufficient conditions under which a quotient inherits the BNF structure from its underlying type. We extend the Isabelle proof assistant with a command that automates the registration of a quotient type as a BNF by lifting the underlying type’s BNF structure. We demonstrate the command’s usefulness through several case studies.